Abstract:
In one embodiment, a device receives a classifier tracking request from a coordinator device that specifies a classifier verification time period. During the classifier verification time period, the device classifies a set of network traffic that includes traffic observed by the device and attack traffic specified by the coordinator device. The device generates classification results based on the classified set of network traffic and provides the classification results to the coordinator device.
Abstract:
In one embodiment, techniques are shown and described relating to attack mitigation using learning machines. A node may receive network traffic data for a computer network, and then predict a probability that one or more nodes are under attack based on the network traffic data. The node may then decide to mitigate a predicted attack by instructing nodes to forward network traffic on an alternative route without altering an existing routing topology of the computer network to reroute network communication around the one or more nodes under attack, and in response, the node may communicate an attack notification message to the one or more nodes under attack.
Abstract:
In one embodiment, attack traffic corresponding to a detected DoS attack from one or more attacker nodes is received at a denial of service (DoS) attack management node in a network. The DoS attack management node determines attack information relating to the attack traffic, including a type of the DoS attack and an intended target of the DoS attack. Then, the DoS attack management node triggers an attack mimicking action based on the attack information, where the attack mimicking action mimics a behavior of the intended target of the DoS attack that would be expected by the one or more attacker nodes if the DoS attack were successful.
Abstract:
In one embodiment, a device in a network receives information regarding one or more attack detection service level agreements. The device identifies a set of attack detection classifiers as potential voters in a voting mechanism used to detect a network attack. The device determines one or more parameters for the voting mechanism based on the information regarding the one or more attack detection service level agreements. The device adjusts the voting mechanism used by the potential voters based on the one or more parameters for the voting mechanism.
Abstract:
In one embodiment, a training request is sent to a plurality of nodes in a network to cause the nodes to generate statistics regarding unicast and broadcast message reception rates associated with the nodes. The statistics are received from the nodes and a statistical model is generated using the received statistics and is configured to detect a network attack by comparing unicast and broadcast message reception statistics. The statistical model is then provided to the nodes and an indication that a network attack was detected by a particular node is received from the particular node.
Abstract:
In one embodiment, statistical information is collected relating to one or both of communication link quality or channel quality in a frequency-hopping network, in which packets are sent according to a frequency-hopping schedule that defines one or more timeslots, each timeslot corresponding to a transmission frequency. Also, a performance metric of a particular transmission frequency corresponding to a scheduled timeslot is predicted based on the collected statistical information. Based on the predicted performance metric, it is determined whether a transmitting node in the frequency-hopping network should transmit a packet during the scheduled timeslot using the particular transmission channel or wait until a subsequent timeslot to transmit the packet using another transmission frequency.
Abstract:
In one embodiment, a first data set is received by a network device that is indicative of the statuses of a plurality of network devices when a type of network attack is not present. A second data set is also received that is indicative of the statuses of the plurality of network devices when the type of network attack is present. At least one of the plurality simulates the type of network attack by operating as an attacking node. A machine learning model is trained using the first and second data set to identify the type of network attack. A real network attack is then identified using the trained machine learning model.
Abstract:
In one embodiment, a service receives telemetry data collected from a plurality of different networks. The service combines the telemetry data into a synthetic input trace. The service inputs the synthetic input trace into a plurality of machine learning models to generate a plurality of predicted key performance indicators (KPIs), each of the models having been trained to assess telemetry data from an associated network in the plurality of different networks and predict a KPI for that network. The service compares the plurality of predicted KPIs to identify one of the plurality of different networks as exhibiting an abnormal behavior.
Abstract:
The present technology allows a hybrid approach to using artificial intelligence engines to perform issue generation, leveraging both on-premise and cloud components. In the technology, a cloud-based computing device receives data associated with a computing network of devices and uses machine-learning to create a model of the computing network. The cloud-based computing device communicates the model to a computing system located on-premise with the computing network and receives data related to the issues and insights created by the on-premise computing system. The cloud-based computing device determines if the on-premise computing system is producing issues and insights below a threshold quality. If yes, the cloud-based computing device updates the model based on updated data associated with the computing network and communicates the updated model to the on-premise computing system.
Abstract:
In one embodiment, possible voting nodes in a network are identified. The possible voting nodes each execute a classifier that is configured to select a label from among a plurality of labels based on a set of input features. A set of one or more eligible voting nodes is selected from among the possible voting nodes based on a network policy. Voting requests are then provided to the one or more eligible voting nodes that cause the one or more eligible voting nodes to select labels from among the plurality of labels. Votes are received from the eligible voting nodes that include the selected labels and are used to determine a voting result.