Abstract:
A breast imaging device for rotating a radiation detection unit configured to detect radiation irradiated from a radiation generation unit configured to generate the radiation with the radiation detection unit and the radiation generation unit facing each other includes a ray sum image generation unit configured to generate a ray sum image based on an addition value of at least one pixel value in a visual line direction from volume data reconstructed from a projection image output from the radiation detection unit, a maximum intensity projection image generation unit configured to generate a maximum intensity projection image based on the maximum pixel value in the visual line direction from the volume data, and a synthesizing unit configured to synthesize the ray sum image and the maximum intensity projection image.
Abstract:
A breast imaging apparatus includes a radiation generation unit configured to generate radiation and a radiation detection unit configured to detect radiation irradiation from the radiation generation unit and can rotate the radiation generation unit and the radiation detection unit in a state in which they face each other. Imaging is performed in a state in which a body part (breast) of an object to be imaged is sandwiched by a pressing panel on a first side of the breast imaging apparatus. In addition, imaging is performed while rotating the radiation generation unit and the radiation detection unit in a state in which the body part (breast) of the object to be imaged is inserted between the radiation generation unit and the radiation detection unit from a second side opposite to the first side of the breast imaging apparatus.
Abstract:
An image processing apparatus obtains a three-dimensional radiation image of a right region of substantially symmetrical regions, obtains a three-dimensional radiation image of a left region of the substantially symmetrical regions, performs alignment between the three-dimensional radiation image of the right region and the three-dimensional radiation image of the left region based on a feature position of the regions, and substantially symmetrically arranges and displays the three-dimensional radiation image of the right region and the three-dimensional radiation image of the left region which have been aligned.
Abstract:
A breast imaging apparatus includes a gantry which includes a radiation generation unit configured to generate a radiation and a radiation detection unit configured to detect the radiation generated from the radiation generation unit, and a support leg portion configured to support the gantry on a floor. The radiation generation unit and the radiation detection unit are capable of rotating in a state where the radiation generation unit and the radiation detection unit face each other. The support leg portion has a recess portion to insert feet of a subject.
Abstract:
An evaluation method for a radiographing apparatus according to the present invention includes an imaging step of imaging a plurality of base phantoms, each of the base phantoms corresponding to a different imaging system and combined with a common evaluation region, and an evaluation step of performing evaluation among the different imaging systems based on an image in which the common evaluation region has been imaged in the imaging step.
Abstract:
An image processing apparatus comprises an obtaining unit that obtains a plurality of images obtained by irradiating radiation having different energies, a generating unit that generates a processed image by compositing the plurality of images, and a compositing unit that generates a composite image by compositing one image among the plurality of images and the processed image so as to enhance a low-frequency component of the one image and enhance a high-frequency component of the processed image.
Abstract:
The present invention provides an image display method that enables intuitive identification of a portion where a mammary gland region and a microcalcified region overlap each other in a radiographic captured image of a breast. The radiographic image data display method according to an aspect of the present invention includes detecting microcalcified regions and a mammary gland region in the radiographic image data, and displaying the microcalcified regions and the mammary gland region on a single screen.
Abstract:
A radiation CT apparatus includes a rotation unit configured to rotate about a rotation axis, a radiation generation unit and a radiation detector which are fixed on either side of the rotation axis in the rotation unit, and a gantry cover containing the radiation generation unit and the radiation detector and including a breast insert portion configured to insert a breast of an object. An opening portion that can be opened and closed is placed on the gantry cover of the radiation CT apparatus. The radiation generation unit and the radiation detector are stopped to form a space that allows a user to access the breast insert portion from the opening portion.
Abstract:
A breast imaging device for rotating a radiation detection unit configured to detect radiation irradiated from a radiation generation unit configured to generate the radiation with the radiation detection unit and the radiation generation unit facing each other includes a ray sum image generation unit configured to generate a ray sum image based on an addition value of at least one pixel value in a visual line direction from volume data reconstructed from a projection image output from the radiation detection unit, a maximum intensity projection image generation unit configured to generate a maximum intensity projection image based on the maximum pixel value in the visual line direction from the volume data, and a synthesizing unit configured to synthesize the ray sum image and the maximum intensity projection image.
Abstract:
A breast imaging apparatus includes a gantry which includes a radiation generation unit configured to generate radiation and a radiation detection unit configured to detect radiation generated by the radiation generation unit, the radiation generation unit and the radiation detection unit being capable of rotating facing each other, wherein the gantry is provided with a front cover configured to protect a subject from the radiation generation unit and the radiation detection unit which rotate during CT imaging, and the front cover has an opening in which the breast of the subject is inserted, and a breast holding portion configured to hold the breast of the subject inserted in the opening.