Abstract:
In an example, a method comprises aligning a central axis of a paddle portion on a write pole circuit to be substantially perpendicular to an adjacent magnetic surface, and bending a central axis of an extended tip portion relative to the central axis of the paddle portion. In another example, a transducer head comprises a write pole circuit having a paddle portion with a central axis, and an extended tip portion with a central axis, the central axis of the extended tip portion angled from the central axis of the paddle portion. In another example, a magnetic circuit comprises a write pole circuit having a paddle portion and an extended tip portion, the extended tip portion bending away from a central axis of the paddle portion, and a coil wrapping around the extended tip portion.
Abstract:
A selectively magnetic insert that is capable of enhancing magnetic writing, such as in use as a data transducing head. In accordance with various embodiments, a write pole is in contact with a selectively magnetic insert that decouples the write pole from at least one adjacent shield in response a powered operation.
Abstract:
A magnetic recording head includes a magnetic recording write element including a main pole having a leading edge and an opposing trailing edge and a first side surface and a second side surface separating the leading edge from the trailing edge. A first side shield gap separates a first side shield from the first side of the main pole and a second side shield gap separates the second side shield from the second side of the main pole. A front magnetic shield is separated from the main pole trailing edge by a front shield gap. A recess extends into the front shield adjacent to the trailing edge, and parallel to the trailing edge. The recess extends laterally away from the main pole and into the front shield a distance greater than the first side shield gap or second side shield gap.
Abstract:
An apparatus that includes a write element including a write element tip having a leading edge, a trailing edge, and first and second side edges connecting the leading edge to the trailing edge, wherein the trailing edge is non-planar; a trailing shield proximate the trailing edge of the write element; a first side shield proximate the first side edge; and a second edge proximate the second side edge.
Abstract:
A patterned magnetic media is disclosed. The patterned media includes etched recording portions including etched portions of a soft magnetic underlayer. In illustrated embodiments, the soft magnetic layer is etched to form recording bits or etched soft magnetic segments to enhance magnetic field strength in the magnetic recording portions. In other embodiments, soft magnetic layers are deposited in etched regions or areas of the media.
Abstract:
A write pole for a read/write head of a disk drive system has a tapered surface on a leading edge thereof. Preferably, the tapered surface has a taper angle of between 0 and 20 degrees from a plane normal to the ABS. By having a write pole with a taper in this manner, sufficient write fields can be achieved even with thinner write pole tips on the ABS surface. By decreasing the thickness of the write pole tip in this manner while maintaining sufficiently high write fields, the skew profile of a write head can be decreased and areal density increased.
Abstract:
Techniques for reducing adjacent track erasure include: a bucking coil having a lower number of turns than the write coil for bucking out a portion of the field induced by the write coil; a hybrid solenoid coil that includes turns that are in a pancake arrangement and turns that are in a solenoid arrangement; a P2 write pole tip with an increasing amount of flare as the distance from the ABS increases; a notch along an edge of the ABS surface of the P1 write pole adjacent to a tooth that extends closest to the P2 write pole; a back notch adjacent to the tooth on the P1 write pole that has a width generally corresponding to the width of the tooth; and a layered structure on the pole tip of the P1 write pole adjacent to the tooth, the layers having at least one of decreasing amounts of saturation magnetization, decreasing amounts of permeability, or alternating layers of magnetic and nonmagnetic material, where the width of the magnetic and nonmagnetic layers in controlled or the characteristics of the magnetic layers are controlled with regard to saturation magnetization or magnetic permeability to effectively decrease the overall saturation magnetization or permeability.
Abstract:
Techniques for reducing adjacent track erasure include: a bucking coil having a lower number of turns than the write coil for bucking out a portion of the field induced by the write coil; a hybrid solenoid coil that includes turns that are in a pancake arrangement and turns that are in a solenoid arrangement; a P2 write pole tip with an increasing amount of flare as the distance from the ABS increases; a notch along an edge of the ABS surface of the P1 write pole adjacent to a tooth that extends closest to the P2 write pole; a back notch adjacent to the tooth on the P1 write pole that has a width generally corresponding to the width of the tooth; and a layered structure on the pole tip of the P1 write pole adjacent to the tooth, the layers having at least one of decreasing amounts of saturation magnetization, decreasing amounts of permeability, or alternating layers of magnetic and nonmagnetic material, where the width of the magnetic and nonmagnetic layers is controlled or the characteristics of the magnetic layers are controlled with regard to saturation magnetization or magnetic permeability to effectively decrease the overall saturation magnetization or permeability.
Abstract:
In an example, a method of manufacturing a transducer head comprises configuring a control circuit to actively synchronize magnetic responses of a shield and a write pole during operation. The method also comprises configuring the control circuit to energize at least one coil wire during operation with a current direction opposite to current flow in a main transducer head coil. In another example, a method comprises actively synchronizing magnetic responses of a shield and a write pole. In another example, a transducer head comprises a write pole and a shield, and a control circuit actively synchronizes magnetic responses of the shield and the write pole.
Abstract:
A magnetic writer is formed with a texture on a surface of a write pole, preferably on a surface associated with the trailing edge of the writer. This texturing results in, in effect, a magnon-magnon scattering process that increases the surface damping of the pole and thus decreases the write field rise time. Rare earth elements can also be added in amounts sufficient to further increase the damping.