Abstract:
A system, method and computer program product is provided for mitigating the effects of burst noise on packets transmitted in a communications system. A transmitting device applies an outer code, which may include, for example, a block code, an exclusive OR (XOR) code, or a repetition code, to one or more packets prior to adaptation of the packets for transmission over the physical (PHY) layer of the communications system, wherein the PHY layer adaptation may include FEC encoding of individual packets. The outer coded packets are then separately transmitted over a channel of the communications system. A receiving device receives the outer coded packets, performs PHY level demodulation and optional FEC decoding of the packets, and then applies outer code decoding to the outer coded packets in order to restore packets that were erased during transmission due to burst noise or other impairments on the channel.
Abstract:
Signal processing under attenuated transmission conditions. Within an orthogonal signal space, the number of orthogonal signals that are used to transmit information from a transmitter to a receiver is reduced and the transmitted power of each of the now remaining orthogonal signals is modified; this may involve increasing the power of all of the remaining orthogonal signals equally or alternatively modifying them individually. The same modulation used before the reduction may also be used afterwards; within communication systems having multiple transmitter-receiver paths, this will ensure that the communication system's throughput and efficiency will remain unchanged even when one (or more) transmitter-receiver paths are highly attenuated. In addition, robust mode operation is provided for ranging and registering of transmitter devices when entering the communication system. In addition, the unused orthogonal signals may be employed to support interference cancellation of those orthogonal signals that are used to transmit information.
Abstract:
Distortion and aliasing reduction for digital to analog conversion. Synthesis of one or more distortion terms made based on a digital signal (e.g., one or more digital codewords) is performed in accordance with digital to analog conversion. The one or more distortion terms may correspond to aliased higher-order harmonics, distortion, nonlinearities, clipping, etc. Such distortion terms may be known a priori, such as based upon particular characteristics of a given device, operational history, etc. Alternatively, such distortion terms may be determined based upon operation of a device and/or based upon an analog signal generated from the analog to conversion process. For example, frequency selective measurements made based on an analog signal generated from the digital to analog conversion may be used for determination of and/or adaptation of the one or more distortion terms. One or more DACs may be employed within various architectures operative to perform digital to analog conversion.
Abstract:
A method and apparatus is disclosed to determine communications receiver parameters from multiple channels of a received communications signal and to configure and/or adjust communications receiver parameters to acquire one or more channels from among the multiple channels of the received communications signal. A communications receiver observes a multi-channel communication signal as it passes through a communication channel. The communications receiver determines one or more communications receiver parameters from the multiple channels of the received communications signal. The communications receiver configures and/or adjusts communications receiver parameters to acquire the one or more channels from among the multiple channels of the received communications signal.
Abstract:
Signal processing under attenuated transmission conditions. Within an orthogonal signal space, the number of orthogonal signals that are used to transmit information from a transmitter to a receiver is reduced and the transmitted power of each of the now remaining orthogonal signals is modified; this may involve increasing the power of all of the remaining orthogonal signals equally or alternatively modifying them individually. The same modulation used before the reduction may also be used afterwards; within communication systems having multiple transmitter-receiver paths, this will ensure that the communication system's throughput and efficiency will remain unchanged even when one (or more) transmitter-receiver paths are highly attenuated. In addition, robust mode operation is provided for ranging and registering of transmitter devices when entering the communication system. In addition, the unused orthogonal signals may be employed to support interference cancellation of those orthogonal signals that are used to transmit information.
Abstract:
A communication device is configured to perform symbol mapping of bits to generate modulation symbols using one or more modulations. The device may employ a blended modulation composed of bit labels or symbols having different numbers of bits per symbol and different modulations. For example, the device may symbol map bit labels/symbols having first number of bits per symbol to first modulation, and the device may symbol map labels/symbols having second number of bits per symbol to second modulation. The device may be configured to perform forward error correction (FEC) or error correction code (ECC) and coding of information bits to generate coded bits that subsequently undergo symbol mapping. The device may be configured to operate based on different operational modes based on substantially uniform steps of rates, or bits per symbol, and energy per bit or symbol to noise spectral density ratio (Eb/N0 or Es/N0).
Abstract:
Methods and systems for DVB-C2 are disclosed and may include receiving data encoded utilizing variable encoding, variable modulation and outer codes via a physical layer matched to a desired quality of service. An error probability may be determined for said received data and retransmission of portions of said data with error probability above an error threshold may be requested. The variable modulation may include single carrier modulation, orthogonal frequency division modulation, synchronous code division multiple access, and/or from 256 QAM to 2048 QAM or greater. The variable encoding may include forward error correction code, which may include low density parity check code.
Abstract:
Many communication systems operate based on orthogonal frequency division multiplexing (OFDM) signaling and/or orthogonal frequency division multiple access (OFDMA) signaling. Within such systems, narrowband interference, which may alternatively be referred to as narrowband ingress, narrowband ingress interference, narrowband noise, etc., may adversely affect one or more subcarriers or tones causing a reduction in performance or even link failure. Such narrowband interference may affect only one or a relatively few tones employed within such communications. When the narrowband interference is identified, a transmission may then be made including one or more information-free tones. A device that receives such a transmission then uses those information-free tones to reduce or cancel the narrowband interference. Such processing may be performed in the frequency-domain, the time domain, or both.
Abstract:
A method and apparatus is disclosed to determine communications receiver parameters from multiple channels of a received communications signal and to configure and/or adjust communications receiver parameters to acquire one or more channels from among the multiple channels of the received communications signal. A communications receiver observes a multi-channel communication signal as it passes through a communication channel. The communications receiver determines one or more communications receiver parameters from the multiple channels of the received communications signal. The communications receiver configures and/or adjusts communications receiver parameters to acquire the one or more channels from among the multiple channels of the received communications signal.
Abstract:
The present invention is directed to systems and method for attenuating intermodulation interference. In particular, methods and systems to attenuate intermodulation interference contained within an aggregate signal having a transmitted signal that was transmitted over a communications channel having channel effects that produce the intermodulation interference are provided. The communications channel may be a cable television distribution network and the signal may be a cable television signal. A method is provided to predict when intermodulation interference will be large, so that actions within a receiver can be taken to reduce the impact of the interference and improve overall receiver performance.