Abstract:
A light guide plate and a method of manufacturing the same, and a backlight module, are disclosed. The light guide plate comprises: a transparent substrate having a light emergence face, a bottom face opposite to the light emergence face, and a plurality of side faces connecting and perpendicular to the light emergence face and the bottom face; and a scattering layer and a first reflective film layer, wherein the scattering layer is formed on the light emergence face of the transparent substrate and the first reflective film layer is formed on the bottom face of the transparent substrate, or the scattering layer is formed on the bottom face of the transparent substrate and the first reflective film layer is formed on the scattering layer.
Abstract:
The embodiments of the present invention relates to a 3D display device and a method for driving the 3D display device, the 3D display device comprising an Active Retarder (AR) (200) and a display panel (100), the display panel (100) comprising N first pixel regions and N second pixel regions, N being an integer larger than or equal to 1, the AR (200) comprising 2N signal electrode sets, each signal electrode set comprises at least one signal electrode, and each signal electrode set corresponding to at least one pixel region of the display panel (100). The embodiments of the present invention also relate to an image processing method and a 3D display device, which can avoid prominent variation in lightness received by the left and right eye when switching from a current frame to a next frame, and thus flicking can be eliminated.
Abstract:
A display device and a switching method of its display modes are provided. The display device comprises: a display panel (1), configured to display an image; a slit grating (2), on a light exiting side of the display panel (1); and a liquid crystal lens (3), on a light exiting side of the slit grating (2) to realize three effects of a concave lens effect, a convex lens effect and a flat light-transmitting glass effect.
Abstract:
The present disclosure relates to the field of display technology, and provides a backlight source and a display device, which address the problem that the misalignment readily occurring between the LED strip and the light guide plate results in a light leakage in the light-emitting diodes and hence a reduced performance of the display device. A backlight source comprises a scattering substrate and a light-emitting diode strip, wherein the light-emitting diode strip comprises a circuit board and light-emitting diodes arranged at intervals on the circuit board, and the scattering substrate comprises recesses at a surface corresponding to the light-emitting diode strip, the recesses corresponding one-to-one with the light-emitting diodes, the light-emitting diodes embedded into the recesses. A display device comprises the backlight.
Abstract:
Embodiments of the present invention provide a 3D display device and a 3D display system, the 3D display device, comprising: a reflecting unit, reflecting light incident thereon; a polarization display unit, formed at a reflected light emitting side of the reflecting unit, and the polarization display unit for displaying images, converting incident natural light into polarized light and transmitting or blocking light reflected by the reflecting unit; and a polarization direction adjustment unit, formed at a reflected light emitting side of the polarization display unit, for converting the reflected light emitted from the polarization display unit into two sets of polarized light with different polarization directions.
Abstract:
A liquid crystal display device includes a liquid crystal panel, a polaroid for polarizing light positioned on a light incident side of the liquid crystal panel, and a polarization analyzer positioned on a light emission side of the liquid crystal panel. The polarization analyzer includes a transparent plate. The transparent plate being arranged at a set angle with a light emission surface of the liquid crystal panel, such that the transparent plate analyzes polarization of light emitted from the light emission surface of the liquid crystal panel. Because the polaroid is used only on the light incident side of the liquid crystal panel, while the transparent plate is used instead of a polaroid on the light emission side of the liquid crystal panel,a reduction in the material cost of the liquid crystal display device can be achieved.
Abstract:
A display apparatus is provided. It comprises a display panel and a switching assembly comprising a transparent light guide plate located at the light incidence side of the display panel and a light source, the transparent light guide plate located at the light incidence side of the display panel and provided with a plurality of mesh points on the surface of the transparent light guide plate facing away from the display panel, the transparent light guide plate having a light incidence face, the light source being located at one side of the light incidence face of the transparent light guide plate and being switchable between one state in which the light is emitted towards the light incidence face of the transparent light guide plate and the other state in which the light is not emitted towards the light incidence face of the transparent light guide plate.
Abstract:
Embodiments of the present invention disclose a depth of field maintaining apparatus, a 3D display system and a display method. The depth of field maintaining apparatus comprises: a 3D video signal input device; a position measuring device; an image processing device; and a 3D video signal output device, wherein the 3D video signal input device, the position measuring device and the 3D video signal output device are connected to the image processing device, the 3D video signal input device transmits an acquired 3D video signal to the image processing device, the position measuring device transmits detected position information of the viewer and the display screen to the image processing device, and the image processing device adjusts a space between corresponding object points in left and right eye images in a 3D video signal in accordance with the position information, such that a depth of field remains unchanged, and transmits a adjusted 3D video signal to the 3D video signal output device.
Abstract:
An embodiment of by the present disclosure provides a display device including a display panel, an anti-blue-light layer and a backlight module, the anti-blue-light layer is positioned between the display panel and the backlight module, and the anti-blue-light layer is capable of reflecting high-energy shortwave blue light incident from a direction of the backlight module and high-energy shortwave blue light incident from a direction of the display panel.
Abstract:
A backlight module, a display device and a driving method are disclosed. The backlight module includes a first light guide plate and a second light guide plate arranged oppositely, a first light source and a second light source. A surface of the first light guide plate facing the second light guide plate is a light exit surface of the first light guide plate. The first light source is arranged at a light entrance surface of the first light guide plate. The second light source is arranged at a light entrance surface of the second light guide plate. The first light guide plate includes a light guide element guiding light along a direction perpendicular to the light exit surface of the first light guide plate. The second light guide plate includes a scattering element.