Abstract:
An apparatus and method for detecting the volume of a liquid drop, and a method for adjusting the volume of a liquid drop are disclosed, so as to improve the convenience in making adjustment and measurement, and to alleviate a measure error. The detecting apparatus includes at least one measuring unit, where each of the at least one measuring unit includes: a first measurement groove, at least one second measurement groove, and a third measurement groove arranged adjacent to the second measurement groove, where the capacity of the first measurement groove is more than the total capacity of the second measurement grooves, the height of a sidewall of the first measurement groove shared by the second measurement groove arranged adjacent thereto is less than the height of a sidewall of the first measurement groove not shared by the second measurement groove.
Abstract:
The present disclosure provides a pixel print structure, a manufacturing method thereof, a display device, and an inkjet printing method. The pixel print structure comprises a substrate, a first side wall and a second side wall located on the substrate, and an intermediate portion located between the first side wall and the second side wall, wherein the first side wall and the intermediate portion define a first area, and the second side wall and the intermediate portion define a second area.
Abstract:
Embodiments of the present disclosure provide a printhead, a printing equipment and a printing method. The printhead includes: a primary liquid discharging assembly, including a plurality of primary liquid discharging nozzles for forming primary droplets; and a plurality of flow branching components below the primary liquid discharging assembly, and the plurality of flow branching components being in one-to-one correspondence with the plurality of primary liquid discharging nozzles, wherein each of the plurality of flow branching component is configured to be in contact with the primary droplet formed by the corresponding primary liquid discharging nozzle of the plurality of primary liquid discharging nozzles, and split each of the primary droplets into at least two branched droplets.
Abstract:
The disclosure provides an organic electroluminescent display panel, and a method for fabricating the same. The organic electroluminescent display panel includes a substrate, and a pixel defining layer and a light emitting layer arranged on the substrate, wherein the pixel defining layer includes a first pixel defining layer arranged on the substrate, and a second pixel defining layer arranged on the first pixel defining layer; the first pixel defining layer includes a plurality of first opening areas, each first opening area defines a sub-pixel light emitting area, and the light emitting layer is arranged in the first opening areas; and the second pixel defining layer includes a plurality of second opening areas, each second opening area defines a virtual pixel area, and each virtual pixel area includes at least two adjacent sub-pixel light emitting areas in the same color.
Abstract:
The present application discloses a method of fabricating a display substrate. The method includes forming a sacrificial layer including a plurality of sacrificial blocks on a base substrate; forming a pixel definition material layer on the base substrate subsequent to forming the sacrificial layer; and removing the sacrificial layer thereby forming a pixel definition layer comprising a plurality of pixel definition blocks. Each of the plurality of sacrificial blocks is formed to have a first side surface distal to the base substrate, a second side surface facing the first side surface and proximal to the base substrate, and a third side surface connecting the first side surface and the second side surface. An average tangential inclination of the third side surface with respect to the second side surface is an acute angle.
Abstract:
Disclosed are an ink-jet printing head, an ink-jet printing method using the ink-jet printing head and an ink-jet printing device including the ink-jet printing head. The ink-jet printing head includes a chamber for accommodating ink and nozzle sets provided on a sidewall of the chamber where ink is sprayed. The nozzle sets are used for ink-jet printing on pixels at different positions, respectively. Each of nozzle sets includes sub-nozzles and the sub-nozzles in each nozzle set can spray different volumes of ink. In the printing head, by providing sub-nozzles having different ink spraying volumes in each nozzle set, ink droplets having desirable volumes can be sprayed from nozzle sets such that total volumes of ink droplets sprayed at different positions from nozzle sets could be more accurate. Therefore, a thickness of a film layer formed by ink-jet printing can be flexibly controlled and adjusted, while having a significantly improved accuracy.
Abstract:
The present disclosure relates to a method and an apparatus for separating a flexible display film from a substrate. The method of separating a flexible display film from a substrate according to the present disclosure comprises the steps of dividing the substrate attached with the flexible display film on a side thereof into a plurality of pieces, and separating part or all of the plurality of pieces from the flexible display film. The apparatus for separating a flexible display film from a substrate according to the present disclosure comprises a division component configured to divide the substrate attached with the flexible display film on a side thereof into the plurality of pieces, and a substrate-film separation component configured to separate part or all of the pieces from the flexible display film.
Abstract:
The present disclosure generally relates to the field of display technology, and in particular, to an array substrate, a method of fabricating the array substrate, a display panel including the array substrate, and a method of fabricating the display panel. An array substrate includes: a base substrate; an electrode layer provided on the substrate; a first pixel defining layer on the electrode layer defining a plurality of pixel regions; and a second pixel defining layer on the first pixel defining layer, wherein the second pixel defining layer has a plurality of first grooves and a plurality of second grooves alternately arranged between two adjacent rows of pixel regions.
Abstract:
The embodiments of the present disclosure provide a method of fabricating a display backplate. The method of fabricating the display backplate may include forming a channel layer on a surface of a substrate. The channel layer may include a liquid storage portion, a plurality of pixel channels, and a plurality of moving electrodes. Each of the plurality of pixel channels may include a plurality of sub-pixel grooves. The method of fabricating the display backplate may further include printing ink droplets into the liquid storage portion and moving the ink droplets into the plurality of sub-pixel grooves by applying a moving voltage to the moving electrodes.
Abstract:
Embodiments of the disclosure provide an array substrate and a manufacturing method thereof, and a display panel. The array substrate includes a base substrate, and a plurality of sub-pixel areas arranged on the base substrate and arranged in arrays, wherein each sub-pixel area includes an electrode structure, a function layer and a blocking layer arranged on the base substrate in sequence; the function layer includes a plurality of accommodating cavities arranged spaced with each other; the blocking layer is lyophobic and includes through holes in one-to-one corresponding to the accommodating cavities one by one; each sub-pixel area in the structure of the above array substrate includes a plurality of uniformly distributed accommodating cavities, and a charged solution is filled into the accommodating cavities.