Abstract:
A system and method synchronizes network data for a device registered to a user. The network data includes a list of a plurality of known wireless networks and authentication data associated with each of the known wireless networks. The method includes establishing a connection to a server of a synchronization network. The method includes transmitting identification data to the server. The identification data indicates the network data corresponding to the user to which the device is registered. The method includes receiving the list of known wireless networks from the server via the synchronization network. The method includes receiving a secure file including the authentication data from the server via the synchronization network.
Abstract:
Methods and apparatuses for operating a wireless mobile station configured to communicate with a wireless access point are described. A wireless mobile station can determine an interval of time between successive target beacon transmission times. The wireless mobile station can adjust, based at least in part on the interval of time, a period of time of an awake timer in response to having determined the interval of time.
Abstract:
In order to facilitate reduced power consumption of an electronic device (such as a smartphone) when communicating with another electronic device (such as an access point) in a wireless network, the electronic device may change a wake policy based on the applications executing on the electronic device. In particular, the electronic device may monitor a subset of the applications currently executed by a processor in the electronic device, where the subset can include zero or more of the applications. Based on the subset, the wake policy of an interface circuit in the electronic device may be changed. This wake policy may specify a frequency of wake ups to receive information from the other electronic device and/or monitoring of unicast or multicast bits in a Traffic Indication Map element. In this way, the time that the electronic device is in the active mode can be reduced, thereby reducing power consumption.
Abstract:
A local device broadcasts a service advertisement in a wireless network, where the service advertisement includes one or more service identifiers (IDs) identifying one or more services being advertised and an availability schedule of the local device. Optionally, the local device reduces power to at least a portion of the local device and wakes up at a time according to the availability schedule. The local device listens in the wireless network according to the availability schedule of the local device. In response to a service request received from a remote device during the availability window, the local device transmits a service response to the remote device. The service request includes one or more service IDs identifying one or more services being inquired by the remote device and the service response includes detailed information associated with one or more services identified by the one or more service IDs.
Abstract:
A system, apparatus and method for synchronizing devices in a peer-to-peer communication environment. Devices select a master to facilitate their synchronization, and rendezvous according to a schedule of availability windows broadcast by the master. Devices may attend some or all of the availability windows, during which they may send and receive unicast and/or multicast messages. Individual devices conserve power by being automatically synchronized instead of having to individually discover other devices and services, and can power off their radios without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexists with other device demands, such as Bluetooth® operations, infrastructure-based communications and so on.
Abstract:
In order to facilitate reduced power consumption of an electronic device (such as a smartphone) when communicating with another electronic device (such as an access point) in a wireless network, the electronic device may change a frequency of network scans performed by an interface circuit in the electronic device based on a motion profile of the electronic device. In particular, the electronic device may determine the motion profile based on spatial information, such as: acceleration data, orientation data, Global Positioning System data and/or data from the wireless network. Then, the electronic device may change the frequency of the network scans performed by the interface circuit based on the motion profile. In this way, the frequency of the network scans can be reduced when the electronic device is stationary or moving rapidly (such as when a user of the electronic device is driving in a car).
Abstract:
Operating conditions of a remote device and operating conditions of a local device are compared, where the local device and the remote device are located within a predetermined proximity of a wireless network. An advertisement request is transmitted from the local device to the remote device based on the comparison of the operating conditions of the local device and the remote device. The advertisement request includes information identifying one or more services advertised by the local device, whereby the remote device is configured to advertise the one or more services on behalf of the local device in the wireless network.
Abstract:
Methods and apparatus for location-based control of parameters such as radio frequency (RF) transmission characteristics of a wireless device. In one embodiment, a determination of a maximum allowable level for a given characteristic associated with the location of the wireless device is made, and the transmission characteristic of the wireless device is adjusted based at least in part on this maximum allowable level. The location may correspond to a regulatory domain with specific requirements for wireless transmitters. A database is referenced to retrieve these requirements. The maximum allowable levels are derived from the requirements. Thus, exemplary wireless devices are capable of universal regulatory compliance.
Abstract:
Methods and apparatuses for operating a wireless mobile station configured to communicate with a wireless access point are described. A first awake timer may be started in response to receiving a beacon signal from the wireless access point. The beacon signal may indicate that data is available or pending for the wireless mobile station. A second awake timer may be started in response to data received from the wireless access point. When the second awake timer expires, the wireless mobile station may return to the sleep state. In one embodiment, the first awake timer counts for a first period of time and the second awake timer counts for a second period of time which is shorter than the first period of time. The RF radio may be in a higher power state when the first and/or the second awake timers are counting. In one embodiment, the wireless mobile station and the wireless access points may be synchronized using target beacon transmission times of the beacon signal.
Abstract:
The disclosed embodiments provide a system that facilitates the execution of a print job. During operation, the system receives, at a printer, a signal from a portable electronic device indicating the printer has been selected for the print job. Next, in response to the selection, the system generates an output that facilitates identification of the printer by a user of the portable electronic device. The system also provides a mechanism for confirming physical access to the printer by the user. Upon confirming the physical access to the printer by the user, the system establishes a connection between the portable electronic device and the printer, wherein the connection is subsequently used by the portable electronic device and the printer to perform the print job.