Abstract:
A proximity sensing device having a light emitting assembly including a light emitting device for proximity sensing positioned on a substrate and a light emitting lens positioned along a side of the light emitting device opposite the substrate and a light receiving assembly having a light receiving device positioned on the substrate and a receiving lens positioned along a side of the light receiving device opposite the substrate. A mid wall is positioned between the light emitting assembly and the light receiving assembly which includes a crosstalk controlling portion positioned between the light emitting lens and the light receiving lens that is configured to reduce optical crosstalk between the light emitting assembly and the light receiving assembly.
Abstract:
Embodiments of the present disclosure provide an optical encoder for an electronic device. The optical encoder includes a spindle and an encoded pattern disposed around a circumference of the spindle. The encoded pattern may include one or more surface features that create a direction-dependent reflective region.
Abstract:
In some examples, the apparatus comprises a mechanical input mechanism comprising a rotatable shaft, an optical sensor configured to detect a rotation of the shaft and detect a movement of the shaft toward or away from the optical sensor, and an optical sensor configured to detect light incident on the optical sensor, the light having a position and an orientation, the orientation of the light based on at least a position of the rotatable shaft, detect a rotation of the shaft, and detect a movement of the shaft based on at least a change in the orientation of the light. In some examples, a mechanical input mechanism is coupled to a housing and configured to contact a force sensor coupled to the housing in response to a user input. In some examples, the force sensor is configured to detect a position of the shaft and detect an amount of force between the shaft and the force sensor.
Abstract:
In some examples, an optical encoder may consist of a light source that shines light onto a wheel which then reflects the light onto a sensor. Using information encoded in the reflected light, the rotation of the wheel may be determined. In some examples, rotation of the wheel may be determined by detecting an encoding pattern in light reflected from an exterior surface of the wheel. In some examples, the encoding pattern can be a pattern of light and dark stripes. In some examples, a pattern of light stripes can be generated from light reflecting off of reflective portions of the wheel. Some examples of the disclosure relate to using a surface topology for a wheel that can be used to generate an encoding pattern of light and dark stripes in light reflected from the surface of the wheel, even when the surface of the wheel is uniformly reflective.
Abstract:
A proximity and light sensing device including a radiation emitter for proximity sensing positioned on a substrate. The device further includes a radiation detector positioned on the substrate, the radiation detector configured to detect radiation from the emitter. An ambient light detector is also positioned on the substrate and around the radiation emitter so as to form a border around the radiation emitter and detect off-axis ambient light rays.
Abstract:
A proximity sensor may be mounted below a display cover layer in an electronic device. The proximity sensor may have a light source that emits light and a detector configured to detect reflections of the emitted light from nearby external objects. The light emitted from the light source may pass through a lens along an axis towards external objects. The light source and the detector may be mounted in a proximity sensor housing having openings that are aligned with the light source and the detector. A reflector may be mounted to the proximity sensor in a configuration that bridges the opening over the light source. The reflector may be formed from a strip of metal or a strip of prism structures. Some of the light from the light source reflects from the reflector at a non-zero angle with respect to the axis and enhances proximity sensor performance.
Abstract:
A proximity and light sensing device including a radiation emitter for proximity sensing positioned on a substrate. The device further includes a radiation detector positioned on the substrate, the radiation detector configured to detect radiation from the emitter. An ambient light detector is also positioned on the substrate and around the radiation emitter so as to form a border around the radiation emitter and detect off-axis ambient light rays.
Abstract:
A proximity sensing device having a light emitting assembly including a light emitting device for proximity sensing positioned on a substrate and a light emitting lens positioned along a side of the light emitting device opposite the substrate and a light receiving assembly having a light receiving device positioned on the substrate and a receiving lens positioned along a side of the light receiving device opposite the substrate. A mid wall is positioned between the light emitting assembly and the light receiving assembly which includes a crosstalk controlling portion positioned between the light emitting lens and the light receiving lens that is configured to reduce optical crosstalk between the light emitting assembly and the light receiving assembly.
Abstract:
Embodiments of the present disclosure provide an optical encoder for an electronic device. The optical encoder includes a spindle and an encoded pattern disposed around a circumference of the spindle. The encoded pattern may include one or more surface features that create a direction-dependent reflective region.
Abstract:
The present disclosure relates generally to electronic devices and methods for sensor signal collection. The electronic devices may include retroreflectors for redirecting scattered light back to the photodetector. The retroreflectors may be positioned at various locations on or in the electronic device, and may employ various geometric elements having retroreflective capability.