Abstract:
A method includes receiving input data at a trained machine learning model that includes a common part and task-specific parts, receiving an execution instruction that identifies one or more processing tasks to be performed, processing the input data using the common part of the trained machine learning model to generate intermediate data, and processing the intermediate data using one or more of the task-specific parts of the trained machine learning model based on the execution instruction to generate one or more outputs.
Abstract:
The present disclosure generally relates to methods and user interfaces for managing visual content at a computer system. In some embodiments, methods and user interfaces for managing visual content in media are described. In some embodiments, methods and user interfaces for managing visual indicators for visual content in media are described. In some embodiments, methods and user interfaces for inserting visual content in media are described. In some embodiments, methods and user interfaces for identifying visual content in media are described. In some embodiments, methods and user interfaces for translating visual content in media are described.
Abstract:
Artistic styles extracted from one or more source images may be applied to one or more target images, e.g., in the form of stylized images and/or stylized video sequences. The extracted artistic style may be stored as a plurality of layers in a neural network, which neural network may be further optimized, e.g., via the fusion of various elements of the network's architectures. An optimized network architecture may be determined for each processing environment in which the network will be applied. The artistic style may be applied to the obtained images and/or video sequence of images using various optimization methods, such as the use of scalars to control the resolution of the unstylized and stylized images, temporal consistency constraints, as well as the use of dynamically adjustable or selectable versions of Deep Neural Networks (DNN) that are responsive to system performance parameters, such as available processing resources and thermal capacity.
Abstract:
Methods and systems for an image construction component capable of generating pixel information for certain regions of an image based on other, existing regions of the image. For example, the image construction component may identify a target block of pixels for which to generate pixel information and then use pixel information for pixels surrounding the target block of pixels in order to identify similar image information within pixels in another part of the image. These identified pixels may then be used in defining the pixel information of the target block of pixels and also used in blending the target block of pixels with the defined pixels surrounding the target block of pixels.
Abstract:
Techniques are disclosed herein for applying an artistic style extracted from one or more source images, e.g., paintings, to one or more target images. The extracted artistic style may then be stored as a plurality of layers in a neural network. In some embodiments, two or more stylized target images may be combined and stored as a stylized video sequence. The artistic style may be applied to the target images in the stylized video sequence using various optimization methods and/or pixel- and feature-based regularization techniques in a way that prevents excessive content pixel fluctuations between images and preserves smoothness in the assembled stylized video sequence. In other embodiments, a user may be able to semantically annotate locations of undesired artifacts in a target image, as well as portion(s) of a source image from which a style may be extracted and used to replace the undesired artifacts in the target image.
Abstract:
Techniques are disclosed herein for applying an artistic style extracted from one or more source images, e.g., paintings, to one or more target images. The extracted artistic style may then be stored as a plurality of layers in a neural network. In some embodiments, two or more stylized target images may be combined and stored as a stylized video sequence. The artistic style may be applied to the target images in the stylized video sequence using various optimization methods and/or pixel- and feature-based regularization techniques in a way that prevents excessive content pixel fluctuations between images and preserves smoothness in the assembled stylized video sequence. In other embodiments, a user may be able to semantically annotate locations of undesired artifacts in a target image, as well as portion(s) of a source image from which a style may be extracted and used to replace the undesired artifacts in the target image.
Abstract:
Techniques to identify and track a pre-identified region-of-interest (ROI) through a temporal sequence of frames/images are described. In general, a down-sampled color gradient (edge map) of an arbitrary sized ROI from a prior frame may be used to generate a small template. This initial template may be used to identify a region of a new or current frame that may be overscan and used to create a current frame's edge map. By comparing the prior frame's template to the current frame's edge map, a cost value or image may be found and used to identify the current frame's ROI center. The size of the current frame's ROI may be found by varying the size of putative new ROIs and testing for their congruence with the prior frame's template. Subsequent ROI's for subsequent frames may be identified to, effectively, track an arbitrarily sized ROI through a sequence of video frames.
Abstract:
A method for dynamically calibrating rotational offset in a device includes obtaining an image captured by a camera of the device. Orientation information of the device at the time of image capture may be associated with the image. Pixel data of the image may be analyzed to determine an image orientation angle for the image. A device orientation angle may be determined from the orientation information. A rotational offset, based on the image orientation angle and the device orientation angle, may be determined. The rotational offset is relative to the camera or orientation sensor. A rotational bias may be determined from statistical analysis of numerous rotational offsets from numerous respective images. In some embodiments, various thresholds and predetermined ranges may be used to exclude some rotational offsets from the statistical analysis or to discontinue processing for that image.
Abstract:
Methods and systems for an image construction component capable of generating pixel information for certain regions of an image based on other, existing regions of the image. For example, the image construction component may identify a target block of pixels for which to generate pixel information and then use pixel information for pixels surrounding the target block of pixels in order to identify similar image information within pixels in another part of the image. These identified pixels may then be used in defining the pixel information of the target block of pixels and also used in blending the target block of pixels with the defined pixels surrounding the target block of pixels.
Abstract:
Artistic styles extracted from one or more source images may be applied to one or more target images, e.g., in the form of stylized images and/or stylized video sequences. The extracted artistic style may be stored as a plurality of layers in a neural network, which neural network may be further optimized, e.g., via the fusion of various elements of the network's architectures. An optimized network architecture may be determined for each processing environment in which the network will be applied. The artistic style may be applied to the obtained images and/or video sequence of images using various optimization methods, such as the use of scalars to control the resolution of the unstylized and stylized images, temporal consistency constraints, as well as the use of dynamically adjustable or selectable versions of Deep Neural Networks (DNN) that are responsive to system performance parameters, such as available processing resources and thermal capacity.