Abstract:
Various embodiments of a computer-implemented method of information security using block cipher column rotations are described. The cipher state column rotations provide resistance to white box side channel memory correlation attacks designed to reverse-engineer a symmetric cipher key associated with the information security system. The column rotation operations can be performed on the cipher state of a block cipher, and then removed from the result, to provide obfuscation of the data when in memory, while not impacting the resulting output of the cipher or decipher operation. The method additionally includes performing a first rotation of an iteration specific cipher subkey according to the first rotation index, performing an iteration of the block cipher operations on the cipher state matrix, and rotating the columns of the cipher state matrix according to an inverse of the first rotation index.
Abstract:
Methods, media, and systems for, in one embodiment, protecting one or more keys in an encryption and/or decryption process can use precomputed values in the process such that at least a portion of the one or more keys is not used or exposed in the process. In one example of a method, internal states of an AES encryption process are saved for use in a counter mode stream cipher operation in which the key used in the AES encryption process is not exposed or used.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for obfuscating data based on a discrete logarithm. A system practicing the method identifies a clear value in source code, replaces the clear value in the source code with a transformed value based on the clear value and a discrete logarithm, and updates portions of the source code that refer to the clear value such that interactions with the transformed value provide a same result as interactions with the clear value. This discrete logarithm approach can be implemented in three variations. The first variation obfuscates some or all of the clear values in loops. The second variation obfuscates data in a process. The third variation obfuscates data pointers, including tables and arrays. The third variation also preserves the ability to use pointer arithmetic.
Abstract:
Systems and methods are described for rate-limiting a message-sending client interacting with a message service based on dynamically calculated risk assessments of the probability that the client is, or is not, a sender of a spam messages. The message service sends a proof of work problem to a sending client device with a difficulty level that is related to a risk assessment that the client is a sender of spam messages. The message system limits the rate at which a known or suspected spammer can send messages by giving the known or suspected spammer client harder proof of work problems to solve, while minimizing the burden on normal users of the message system by given them easier proof of work problems to solve that can typically be solved by the client within the time that it takes to type a message.
Abstract:
Some embodiments provide a method for performing an iterative block cipher. Line rotations and column rotations are combined to have a diversity of representations of the AES state. These protections can be performed either in static mode where the rotations are directly included in the code and the tables or in dynamic mode where the rotations are chosen randomly at execution time, depending on some entropic context variables. The two modes can also be advantageously combined together.
Abstract:
Some embodiments provide a method for performing a cryptographic process. The method receives first and second cipher keys. The method generates a set of subkeys corresponding to each of the first and second cipher keys. The set of subkeys for the first cipher key is dependent on the first cipher key and the second cipher key. The method performs the cryptographic process by using the generated sets of subkeys.
Abstract:
Some embodiments provide a method for performing a cryptographic process. The method receives first and second cipher keys. The method generates a set of subkeys corresponding to each of the first and second cipher keys. The set of subkeys for the first cipher key is dependent on the first cipher key and the second cipher key. The method performs the cryptographic process by using the generated sets of subkeys.
Abstract:
The fake cryptographic layer obfuscation technique can be used to lure an attacker into expending reverse engineering efforts on sections of code the attacker would normally ignore. To do this the obfuscation technique can identify sections of code that are likely to be of lesser interest to the attacker and disguise them as higher value sections. This can be achieved by transforming a lower value section of code to include code patterns, constants, or other characteristics known to exist in sections of code of higher value, such as cryptographic routines. To transform a code section, the obfuscation technique can use one or more program modifications including control flow modifications, constant value adjustments to simulate well-known cryptographic scalars, buffer extensions, fake characteristic table insertion, debug-like information insertion, derivation function-code generation linking, and/or cryptographic algorithm specific instruction insertion.
Abstract:
Methods, media, and systems for, in one embodiment, protecting one or more keys in an encryption and/or decryption process can use precomputed values in the process such that at least a portion of the one or more keys is not used or exposed in the process. In one example of a method, internal states of an AES encryption process are saved for use in a counter mode stream cipher operation in which the key used in the AES encryption process is not exposed or used.
Abstract:
Methods, media, and systems for, in one embodiment, protecting one or more keys in an encryption and/or decryption process can use precomputed values in the process such that at least a portion of the one or more keys is not used or exposed in the process. In one example of a method, internal states of an AES encryption process are saved for use in a counter mode stream cipher operation in which the key used in the AES encryption process is not exposed or used.