Abstract:
Techniques are described for providing customizable sign-on functionality, such as via an access manager system that provides single sign-on functionality and other functionality to other services for use with those services' users. The access manager system may maintain various sign-on and other account information for various users, and provide single sign-on functionality for those users using that maintained information on behalf of multiple unrelated services with which those users interact. The access manager may allow a variety of types of customizations to single sign-on functionality and/or other functionality available from the access manager, such as on a per-service basis via configuration by an operator of the service, such as co-branding customizations, customizations of information to be gathered from users, customizations of authority that may be delegated to other services to act on behalf of users, etc., and with the customizations that are available being determined specifically for that service.
Abstract:
Techniques are described for providing customizable sign-on functionality, such as via an access manager system that provides single sign-on functionality and other functionality to other services for use with those services' users. The access manager system may maintain various sign-on and other account information for various users, and provide single sign-on functionality for those users using that maintained information on behalf of multiple unrelated services with which those users interact. The access manager may allow a variety of types of customizations to single sign-on functionality and/or other functionality available from the access manager, such as on a per-service basis via configuration by an operator of the service, such as co-branding customizations, customizations of information to be gathered from users, customizations of authority that may be delegated to other services to act on behalf of users, etc., and with the customizations that are available being determined specifically for that service.
Abstract:
Techniques are described for facilitating sharing of executable software images between users in a configurable manner. In at least some situations, the executable software images are virtual machine images, and while executing may access and use remote network-accessible services (e.g., Web services). In addition, some or all shared executable software images may be made available in a fee-based manner by creator users, such that execution of such a fee-based software image by a software image execution service on behalf of a user other than the creator user is performed in exchange for fees from the other user as specified by the creator user. The creator user may further receive at least some of the specified fees paid by the other user, such as at least some of a difference between the specified fees and fees charged by the software image execution service for the execution.
Abstract:
Techniques are described for providing customizable sign-on functionality, such as via an access manager system that provides single sign-on functionality and other functionality to other services for use with those services' users. The access manager system may maintain various sign-on and other account information for various users, and provide single sign-on functionality for those users using that maintained information on behalf of multiple unrelated services with which those users interact. The access manager may allow a variety of types of customizations to single sign-on functionality and/or other functionality available from the access manager, such as on a per-service basis via configuration by an operator of the service, such as co-branding customizations, customizations of information to be gathered from users, customizations of authority that may be delegated to other services to act on behalf of users, etc., and with the customizations that are available being determined specifically for that service.
Abstract:
Techniques are described for managing access to computing-related resources that, for example, may enable multiple distinct parties to independently control access to the resources (e.g., such that a request to access a resource succeeds only if all of multiple associated parties approve that access). For example, an executing software application may, on behalf of an end user, make use of computing-related resources of one or more types that are provided by one or more remote third-party network services (e.g., data storage services provided by an online storage service)—in such a situation, both the developer user who created the software application and the end user may be allowed to independently specify access rights for one or more particular such computing-related resources (e.g., stored data files), such that neither the end user nor the software application developer user may later access those resources without the approval of the other party.
Abstract:
Techniques are described for managing distributed execution of programs. In some situations, the techniques include determining configuration information to be used for executing a particular program in a distributed manner on multiple computing nodes and/or include providing information and associated controls to a user regarding ongoing distributed execution of one or more programs to enable the user to modify the ongoing distributed execution in various manners. Determined configuration information may include, for example, configuration parameters such as a quantity of computing nodes and/or other measures of computing resources to be used for the executing, and may be determined in various manners, including by interactively gathering values for at least some types of configuration information from an associated user (e.g., via a GUI that is displayed to the user) and/or by automatically determining values for at least some types of configuration information (e.g., for use as recommendations to a user).
Abstract:
Methods and systems for optimization of task execution are disclosed. A definition of a task is received. A plurality of parameter values for execution of the task are selected based on an execution history for a plurality of prior tasks performed for a plurality of clients. The plurality of parameter values are selected to optimize one or more execution constraints for the execution of the task. The execution of the task is initiated using one or more computing resources configured with the selected parameter values.
Abstract:
Methods and systems for using a scheduler in a data pipeline are disclosed. A plurality of objects in a first layer are created, each representing a respective regularly scheduled task. A plurality of objects in a second layer are created, each representing a respective scheduled instance of a regularly scheduled task. It is determined whether each object in the second layer is ready to execute. For at least one object in the second layer, it is determined if the object has received notifications from any objects on which it depends. For each object that is ready to execute, the regularly scheduled task associated with the object is performed. For each object that is not ready to execute, the object is put to sleep.
Abstract:
Techniques are described for providing customizable sign-on functionality, such as via an access manager system that provides single sign-on functionality and other functionality to other services for use with those services' users. The access manager system may maintain various sign-on and other account information for various users, and provide single sign-on functionality for those users using that maintained information on behalf of multiple unrelated services with which those users interact. The access manager may allow a variety of types of customizations to single sign-on functionality and/or other functionality available from the access manager, such as on a per-service basis via configuration by an operator of the service, such as co-branding customizations, customizations of information to be gathered from users, customizations of authority that may be delegated to other services to act on behalf of users, etc., and with the customizations that are available being determined specifically for that service.
Abstract:
Techniques are described for providing customizable sign-on functionality, such as via an access manager system that provides single sign-on functionality and other functionality to other services for use with those services' users. The access manager system may maintain various sign-on and other account information for various users, and provide single sign-on functionality for those users using that maintained information on behalf of multiple unrelated services with which those users interact. The access manager may allow a variety of types of customizations to single sign-on functionality and/or other functionality available from the access manager, such as on a per-service basis via configuration by an operator of the service, such as co-branding customizations, customizations of information to be gathered from users, customizations of authority that may be delegated to other services to act on behalf of users, etc., and with the customizations that are available being determined specifically for that service.