Abstract:
Methods and systems for predicting a future dental or orthodontic condition(s) are provided. In one aspect, a computer-implemented method for calculating a future position of an intraoral object of a patient's intraoral cavity is provided. The method can include receiving first and second digital data representative of an actual state of the intraoral cavity at first and second time points. The method can include processing data including the first and second digital data so as to determine a velocity of an intraoral object of the intraoral cavity over the first and second time points. A future position of the intraoral object at a future time point can be determined based on the velocity.
Abstract:
The present invention relates to orthodontic positioning appliances that represent teeth in desired positions and related systems and methods. An appliance can include teeth receiving cavities shaped to receive and apply a resilient positioning force to a patient's teeth. An appliance can include an outer component having a surface representing teeth in desired positions. An outer component can be integral with an appliance. An outer component can be separate and configured to couple with an appliance main body.
Abstract:
Embodiments are provided for digital dental modeling. One method embodiment includes receiving a three-dimensional data set including a first jaw and a second jaw of a three-dimensional digital dental model and receiving a two-dimensional data set corresponding to at least a portion of the first jaw and the second jaw. The method includes mapping two-dimensional data of the two-dimensional data set to the three-dimensional digital dental model by transforming a coordinate system of the two-dimensional data to a coordinate system of the three-dimensional data set. The method includes positioning the first jaw with respect to the second jaw based on the two-dimensional data mapped to the three-dimensional data set. The method includes using at least a portion of the two-dimensional data mapped to the three-dimensional data set as a target of movement of the first jaw with respect to the second jaw in the three-dimensional digital dental model.
Abstract:
The present invention relates to orthodontic positioning appliances that represent teeth in desired positions and related systems and methods. An appliance can include teeth receiving cavities shaped to receive and apply a resilient positioning force to a patient's teeth. An appliance can include an outer component having a surface representing teeth in desired positions. An outer component can be integral with an appliance. An outer component can be separate and configured to couple with an appliance main body.
Abstract:
Embodiments are provided for digital dental modeling. One method embodiment includes receiving a three-dimensional data set including a first jaw and a second jaw of a three-dimensional digital dental model and receiving a two-dimensional data set corresponding to at least a portion of the first jaw and the second jaw. The method includes mapping two-dimensional data of the two-dimensional data set to the three-dimensional digital dental model by transforming a coordinate system of the two-dimensional data to a coordinate system of the three-dimensional data set. The method includes positioning the first jaw with respect to the second jaw based on the two-dimensional data mapped to the three-dimensional data set. The method includes using at least a portion of the two-dimensional data mapped to the three-dimensional data set as a target of movement of the first jaw with respect to the second jaw in the three-dimensional digital dental model.
Abstract:
A dental appliance having an integrally formed reservoir and/or an ornamental design integrated thereon. The ornamental design can be selected or customized by a patient. The design can be created by directing energy to the dental appliance to alter a material property of at least a portion of the appliance to create the design. Alternatively, a groove or recess can be formed on a surface of the appliance to either mechanically retain an ornamental design or the groove or recess can be filled with ink to form the design. The appliance, including the integrally formed reservoir, can be formed using direct fabrication techniques.
Abstract:
Embodiments are provided for digital dental modeling. One method embodiment includes receiving a three-dimensional data set including a first jaw and a second jaw of a three-dimensional digital dental model and receiving a two-dimensional data set corresponding to at least a portion of the first jaw and the second jaw. The method includes mapping two-dimensional data of the two-dimensional data set to the three-dimensional digital dental model by transforming a coordinate system of the two-dimensional data to a coordinate system of the three-dimensional data set. The method includes positioning the first jaw with respect to the second jaw based on the two-dimensional data mapped to the three-dimensional data set. The method includes using at least a portion of the two-dimensional data mapped to the three-dimensional data set as a target of movement of the first jaw with respect to the second jaw in the three-dimensional digital dental model.
Abstract:
Embodiments are provided for digital dental modeling. One method embodiment includes receiving a three-dimensional data set including a first jaw and a second jaw of a three-dimensional digital dental model and receiving a two-dimensional data set corresponding to at least a portion of the first jaw and the second jaw. The method includes mapping two-dimensional data of the two-dimensional data set to the three-dimensional digital dental model by transforming a coordinate system of the two-dimensional data to a coordinate system of the three-dimensional data set. The method includes positioning the first jaw with respect to the second jaw based on the two-dimensional data mapped to the three-dimensional data set. The method includes using at least a portion of the two-dimensional data mapped to the three-dimensional data set as a target of movement of the first jaw with respect to the second jaw in the three-dimensional digital dental model.
Abstract:
Embodiments are provided for digital dental modeling. One method embodiment includes receiving a three-dimensional data set including a first jaw and a second jaw of a three-dimensional digital dental model and receiving a two-dimensional data set corresponding to at least a portion of the first jaw and the second jaw. The method includes mapping two-dimensional data of the two-dimensional data set to the three-dimensional digital dental model by transforming a coordinate system of the two-dimensional data to a coordinate system of the three-dimensional data set. The method includes positioning the first jaw with respect to the second jaw based on the two-dimensional data mapped to the three-dimensional data set. The method includes using at least a portion of the two-dimensional data mapped to the three-dimensional data set as a target of movement of the first jaw with respect to the second jaw in the three-dimensional digital dental model.
Abstract:
Methods and systems for predicting a future dental or orthodontic condition(s) are provided. In one aspect, a computer-implemented method for calculating a future position of an intraoral object of a patient's intraoral cavity is provided. The method can comprise receiving first and second digital data representative of an actual state of the intraoral cavity at first and second time points. The method can comprise processing data including the first and second digital data so as to determine a velocity of an intraoral object of the intraoral cavity over the first and second time points. A future position of the intraoral object at a future time point can be determined based on the velocity.