HIERARCHICAL SEGMENTATION BASED SOFTWARE TOOL USAGE IN A VIDEO

    公开(公告)号:US20220301313A1

    公开(公告)日:2022-09-22

    申请号:US17805076

    申请日:2022-06-02

    Applicant: ADOBE INC.

    Abstract: Embodiments are directed to segmentation and hierarchical clustering of video. In an example implementation, a video is ingested to generate a multi-level hierarchical segmentation of the video. In some embodiments, the finest level identifies a smallest interaction unit of the video—semantically defined video segments of unequal duration called clip atoms. Clip atom boundaries are detected in various ways. For example, speech boundaries are detected from audio of the video, and scene boundaries are detected from video frames of the video. The detected boundaries are used to define the clip atoms, which are hierarchically clustered to form a multi-level hierarchical representation of the video. In some cases, the hierarchical segmentation identifies a static, pre-computed, hierarchical set of video segments, where each level of the hierarchical segmentation identifies a complete set (i.e., covering the entire range of the video) of disjoint (i.e., non-overlapping) video segments with a corresponding level of granularity.

    HIERARCHICAL SEGMENTATION OF SCREEN CAPTURED, SCREENCASTED, OR STREAMED VIDEO

    公开(公告)号:US20220292831A1

    公开(公告)日:2022-09-15

    申请号:US17805080

    申请日:2022-06-02

    Applicant: ADOBE INC.

    Abstract: Embodiments are directed to segmentation and hierarchical clustering of video. In an example implementation, a video is ingested to generate a multi-level hierarchical segmentation of the video. In some embodiments, the finest level identifies a smallest interaction unit of the video—semantically defined video segments of unequal duration called clip atoms. Clip atom boundaries are detected in various ways. For example, speech boundaries are detected from audio of the video, and scene boundaries are detected from video frames of the video. The detected boundaries are used to define the clip atoms, which are hierarchically clustered to form a multi-level hierarchical representation of the video. In some cases, the hierarchical segmentation identifies a static, pre-computed, hierarchical set of video segments, where each level of the hierarchical segmentation identifies a complete set (i.e., covering the entire range of the video) of disjoint (i.e., non-overlapping) video segments with a corresponding level of granularity.

    HIERARCHICAL SEGMENTATION BASED ON VOICE-ACTIVITY

    公开(公告)号:US20220292830A1

    公开(公告)日:2022-09-15

    申请号:US17805075

    申请日:2022-06-02

    Applicant: ADOBE INC.

    Abstract: Embodiments are directed to segmentation and hierarchical clustering of video. In an example implementation, a video is ingested to generate a multi-level hierarchical segmentation of the video. In some embodiments, the finest level identifies a smallest interaction unit of the video—semantically defined video segments of unequal duration called clip atoms. Clip atom boundaries are detected in various ways. For example, speech boundaries are detected from audio of the video, and scene boundaries are detected from video frames of the video. The detected boundaries are used to define the clip atoms, which are hierarchically clustered to form a multi-level hierarchical representation of the video. In some cases, the hierarchical segmentation identifies a static, pre-computed, hierarchical set of video segments, where each level of the hierarchical segmentation identifies a complete set (i.e., covering the entire range of the video) of disjoint (i.e., non-overlapping) video segments with a corresponding level of granularity.

    REFINING IMAGE ACQUISITION DATA THROUGH DOMAIN ADAPTATION

    公开(公告)号:US20220101476A1

    公开(公告)日:2022-03-31

    申请号:US17034467

    申请日:2020-09-28

    Applicant: Adobe Inc.

    Abstract: The technology described herein is directed to a cross-domain training framework that iteratively trains a domain adaptive refinement agent to refine low quality real-world image acquisition data, e.g., depth maps, when accompanied by corresponding conditional data from other modalities, such as the underlying images or video from which the image acquisition data is computed. The cross-domain training framework includes a shared cross-domain encoder and two conditional decoder branch networks, e.g., a synthetic conditional depth prediction branch network and a real conditional depth prediction branch network. The shared cross-domain encoder converts synthetic and real-world image acquisition data into synthetic and real compact feature representations, respectively. The synthetic and real conditional decoder branch networks convert the respective synthetic and real compact feature representations back to synthetic and real image acquisition data (refined versions) conditioned on data from the other modalities. The cross-domain training framework iteratively trains the domain adaptive refinement agent.

Patent Agency Ranking