Abstract:
A power supply phase doubling system includes a pulse width modulation (PWM) controller and first and second phase doubling chips. The PWM controller outputs a PWM signal. The first phase doubling chip is operated at a power supply voltage and has a first PWM output pin to generate a first control signal and a second control signal according to the PWM signal, and generates a first output signal according to the first control signal. The second phase doubling chip is operated at the power supply voltage, has a second PWM output pin, and is configured to generate a second output signal according to the second control signal. The first and second phase doubling chips are respectively switched between a master mode and a slave mode according to a voltage level of the first PWM output pin and a voltage level of the second PWM output pin.
Abstract:
A charging method of a portable electronic device, adapted to charge a battery module of a portable electronic device, the charging method comprising detecting a battery voltage and a charging current of the battery module; determining whether the portable electronic device operates at a constant current mode according to the battery voltage; entering an over voltage protection charging loop while the portable electronic device operates at the constant current mode and allows the battery module to be charged up at a maximum charging voltage, and leaving the over voltage protection charging loop while the charging current is smaller than a predetermined current, wherein the maximum charging voltage is gradually decreased according to a comparison result between the battery voltage and an overcharging protection voltage; and setting the maximum charging voltage as a full charge voltage while leaving the over voltage protection charging loop.
Abstract:
A power adapter includes a power converting circuit, a connecting terminal and a controller. The power converting circuit is used to convert an input voltage to an output voltage according to a control signal. The connecting terminal is connected to an electronic device to allow the output voltage outputted by the power converting circuit to charge the electronic device. The controller receives an identifying command from the electronic device when the electronic device is connected to the connecting terminal, and outputs the control signal according to the identifying command.
Abstract:
A power supply control method and a portable electronic device using the same are provided. The power supply control method includes following steps: detecting an input voltage and an input current at a power input terminal of the portable electronic device; setting a plurality of detection loads sequentially to control a power adaptor to provide a detection current as the input current for the portable electronic device respectively; calculating an equivalent input impedance of the power input terminal according to the detection current and the corresponding input voltage; calculating an actual output voltage of the power adaptor according to the equivalent input impedance, the input voltage, and the input current; and setting a work load according to the actual output voltage to control the power adaptor to provide a work current as the input current for the portable electronic device.
Abstract:
A charging method and a portable electronic device using the same are provided. The charging method includes following steps: detecting a battery voltage and a charging current of a battery module; determining whether the portable electronic device operates at a constant voltage (CV) charging mode; executing an impedance calculation at the CV charging mode to obtain a first battery voltage corresponding to a first predetermined current and a second battery voltage corresponding to a second predetermined current; calculating a compensation impedance according to the predetermined current and the battery voltages; setting a maximum charging voltage according to the compensation impedance and executing a CV charging to the battery module accordingly; determining whether a current variation of the charging current is larger than a threshold value; re-executing the impedance calculation; updating a setting value of the maximum charging voltage when the current variation is larger than the threshold value.
Abstract:
A charging protection device comprises a universal serial bus (USB) interface, a resistance circuit, a detection circuit and a control circuit. The universal serial bus interface includes a configuration channel. The resistance circuit includes a pull-down resistor coupled between the configuration channel and a ground GND. The detection circuit is configured to detect an abnormal charging condition. The detection circuit generates an abnormal signal when the abnormal charging condition occurs. The control circuit is coupled to the detection circuit and configured to change a voltage value on the pull-down resistor to be out of a preset voltage range according to the abnormal signal.
Abstract:
A charging method and a portable electronic device using the same are provided. The charging method includes following steps: detecting a battery voltage and a charging current of a battery module; determining whether the portable electronic device operates at a constant voltage (CV) charging mode; executing an impedance calculation at the CV charging mode to obtain a first battery voltage corresponding to a first predetermined current and a second battery voltage corresponding to a second predetermined current; calculating a compensation impedance according to the predetermined current and the battery voltages; setting a maximum charging voltage according to the compensation impedance and executing a CV charging to the battery module accordingly; determining whether a current variation of the charging current is larger than a threshold value; re-executing the impedance calculation; updating a setting value of the maximum charging voltage when the current variation is larger than the threshold value.
Abstract:
A wireless power supply and power receiving device includes a sensor, a control module, a coil module and a rectifying and switching module. The control module determines a position or a direction of the wireless power supply and power receiving device according to the sensor, and the rectifying and switching module selectively operates in a wireless power supply mode or a wireless power receiving mode according to the position or the direction. When in the wireless power supply mode, the rectifying and switching module converts the power energy to wireless power energy to provide power to a first external device by using the coil module. When in the wireless power receiving mode, the rectifying and switching module receives wireless power energy from a second external device via the coil module.
Abstract:
An electronic device and a method for recognizing output power of a power supply thereof are provided. The electronic device includes a host and a power supply. The power supply is coupled to the host, receives an input power and converts the input power to a supplied power. The power supply transmits the supplied power to the host, and loads a notification signal to the supplied power in at least a time period. The acknowledge signal is a periodic clock signal, and corresponds to the output power of the power supply. The power supply loads the acknowledge signal to the supplied power in one or more time periods, and transmits the acknowledge signal to the corresponding host. The host can get the output power of the power supply via the acknowledge signal, which can improve efficiency and security of the supplied power.
Abstract:
A charging method of a portable electronic device, adapted to charge a battery module of a portable electronic device, the charging method comprising detecting a battery voltage and a charging current of the battery module; determining whether the portable electronic device operates at a constant current mode according to the battery voltage; entering an over voltage protection charging loop while the portable electronic device operates at the constant current mode and allows the battery module to be charged up at a maximum charging voltage, and leaving the over voltage protection charging loop while the charging current is smaller than a predetermined current, wherein the maximum charging voltage is gradually decreased according to a comparison result between the battery voltage and an overcharging protection voltage; and setting the maximum charging voltage as a full charge voltage while leaving the over voltage protection charging loop.