Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
Controlling the output of audio based on the mode of an electronic device having a sound mode, silent mode, and mute mode, along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device, while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory or providing an instruction on the device related to volume control. Other aspects are also described and claimed.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
This is directed to controlling the output of audio based on the mode of an electronic device. In particular, this is directed to an electronic device having a sound mode, silent mode, and mute mode controlling the output of audio along different audio output routes. In the sound mode, all audio can be output, while only registered or authorized audio can be output in the silent mode. In the mute mode, no audio can be output. The sound and silent modes can be enabled using an interface of the device (e.g., a switch having two possible states), while the mute mode can be enabled using an accessory coupled to the device. To disengage the mute mode, a user can provide a corresponding instruction using the accessory, or providing an instruction on the device related to volume control. For example, a user can change the device volume using an on-device interface, or toggle a sound/silent switch to a sound mode.
Abstract:
Private and secure autocomplete suggestions are enabled based on a user contacts database, even when an application has not been granted access to the user contacts database. A keyboard process can receive and display suggestions based on input provided via the keyboard. The suggestions are generated based on a contacts database of a user. The suggestions are generated without exposing the contacts database to the application. Suggestions are then displayed to the user without exposing the suggestions to the application. Once a suggestion is selected by a user, the selected suggestion is provided to the application for insertion into a text field.
Abstract:
Private and secure autocomplete suggestions are enabled based on a user contacts database, even when an application has not been granted access to the user contacts database. A keyboard process can receive and display suggestions based on input provided via the keyboard. The suggestions are generated based on a contacts database of a user. The suggestions are generated without exposing the contacts database to the application. Suggestions are then displayed to the user without exposing the suggestions to the application. Once a suggestion is selected by a user, the selected suggestion is provided to the application for insertion into a text field.
Abstract:
Embodiments described herein provide a software-based privacy indicator for a camera and microphone that focuses not purely on hardware status (e.g., on or off), but on whether potentially private data is flowing to the system or an application. If based purely on hardware status, the indicator for an electronic device may be shown in scenarios where no data actually flows to the system or applications. The privacy indicator will be enabled if any camera or microphone data is relayed to the operating system or an application that is executed via the operating system. When the device uses the microphone and camera to capture environmental metadata about the surroundings of the device without providing any audio samples, images, or video frames to the system or an application, the privacy indicator will not be enabled.
Abstract:
Methods and systems are disclosed that create user interface (UI) instances for corresponding input/output resources, such as display resources, and each of these UI instances have separate lifecycle states or information maintained by the respective UI instances. System processes for the display resources (e.g. different displays or different windows for the same display devices) can control access to their respective display resource and can report changes in the lifecycle states to their respective UI interface.
Abstract:
Methods, systems, and computer-readable medium for providing telecommunications carrier configuration at activation of a mobile device. In one implementation, a method is provided. The method includes receiving a request for activation of a mobile device, and during activation of the mobile device, determining for the mobile device a telecommunications carrier from a number of telecommunications carriers, and identifying information associated with the determined telecommunications carrier for configuring the mobile device.