Abstract:
A wireless headset includes first and second wireless earphone devices, each including a microphone. The first earphone device assembles a first group of audio packets, each of which includes a first low-resolution clock value, a first high-resolution clock value, and a sequence of first microphone samples, and transmits the first plurality of audio packets to the second wireless earphone device, as a slave device of a first wireless network. The second earphone device receives the first group of audio packets from the first wireless earphone device, assembles a second group of audio packets, each of which includes a second low-resolution clock value, a second high-resolution clock value, and a sequence of second microphone samples, and transmits the first and second groups of audio packets to an external device. Other aspects are also described and claimed.
Abstract:
An audio encoding device and an audio decoding device are described herein. The audio encoding device may examine a set of audio channels/channel groups representing a piece of sound program content and produce a set of ducking values to associate with one of the channels/channel groups. During playback of the piece of sound program content, the ducking values may be applied to all other channels/channel groups. Application of these ducking values may cause (1) the reduction in dynamic range of ducked channels/channel groups and/or (2) movement of channels/channel groups in the sound field. This ducking may improve intelligibility of audio in the non-ducked channel/channel group. For instance, a narration channel/channel group may be more clearly heard by listeners through the use of selective ducking of other channels/channel groups during playback.
Abstract:
An audio normalization gain value is applied to an audio signal to produce a normalized signal. The normalized signal is processed to compute dynamic range control (DRC) gain values in accordance with a selected one of several pre-defined DRC characteristics. The audio signal is encoded, and the DRC gain values are provided as metadata associated with the encoded audio signal. Several other embodiments are also described and claimed.
Abstract:
Unwanted audio, such as explicit language, may be removed during audio playback. An audio player may identify and remove unwanted audio while playing an audio stream. Unwanted audio may be replaced with alternate audio, such as non-explicit lyrics, a “beep”, or silence. Metadata may be used to describe the location of unwanted audio within an audio stream to enable the removal or replacement of the unwanted audio with alternate audio. An audio player may switch between clean and explicit versions of a recording based on the locations described in the metadata. The metadata, as well as both the clean and explicit versions of the audio data, may be part of a single audio file, or the metadata may be separate from the audio data. Additionally, real-time recognition analysis may be used to identify unwanted audio during audio playback.
Abstract:
Disclosed are systems and methods to modify the Bluetooth mono HFP protocol to support bi-directional stereo operation for high bandwidth audio including 12-KHz wide-band, 16-KHz super wide-band (SWB), and 24-KHz full band (FB) audio. The techniques leverage the larger packet size and longer duty cycle of the 2-EV5 transport packet and expand the block size of the audio frames generated by the AAC-ELD codec to increase the maximum data throughput from the 64 kbps of the mono HFP protocol to 192 kbps using a stereo HFP protocol. The increased throughput not only supports stereo operations, but allows the transport of redundant or FEC packets for increased robustness against packet loss. In one aspect, the AAC-ELD codec may be configured for dynamic bit rate switching to flexibly perform trade-offs between audio quality and robustness against packet loss. The stereo HFP may configure the maximum throughput based on the desired audio quality.
Abstract:
An audio encoding device and an audio decoding device are described herein. The audio encoding device may examine a set of audio channels/channel groups representing a piece of sound program content and produce a set of ducking values to associate with one of the channels/channel groups. During playback of the piece of sound program content, the ducking values may be applied to all other channels/channel groups. Application of these ducking values may cause (1) the reduction in dynamic range of ducked channels/channel groups and/or (2) movement of channels/channel groups in the sound field. This ducking may improve intelligibility of audio in the non-ducked channel/channel group. For instance, a narration channel/channel group may be more clearly heard by listeners through the use of selective ducking of other channels/channel groups during playback.
Abstract:
This disclosure relates to inter radio access technology management for audiovisual calls. Wireless link availability and suitability for an audiovisual call may be evaluated for each of a first radio access technology and a second radio access technology. One or more wireless links on which to establish an audiovisual call may be selected based on the evaluations. The audiovisual call may be established on the selected wireless link(s). Wireless link availability and suitability for an audiovisual call may be monitored during the audiovisual call and decisions on whether to perform handover to a different wireless link and/or media duplication on multiple wireless links may be made based on the suitability for an audiovisual call of available wireless links.
Abstract:
An audio normalization gain value is applied to an audio signal to produce a normalized signal. The normalized signal is processed to compute dynamic range control (DRC) gain values in accordance with a selected one of several pre-defined DRC characteristics. The audio signal is encoded, and the DRC gain values are provided as metadata associated with the encoded audio signal. Several other embodiments are also described and claimed.
Abstract:
Method of audio power reduction and thermal mitigation using psychoacoustic techniques starts by receiving a decoded audio signal in a reproduction system. Decoded audio signal is a signal that is decompressed and to be played back by a speaker. A masking curve is generated based on psychoacoustic models and the decoded audio signal. The masking curve is applied to the decoded audio signal to remove unheard frequencies and to generate a power-reduced audio signal. Other embodiments are also described.
Abstract:
A device with microphones can generate microphone signals during an audio recording. The device can store, in an electronic audio data file, the microphone signals, and metadata that includes impulse responses of the microphones. Other aspects are described and claimed.