Abstract:
An electronic device may be provided with antennas. Antennas for the electronic device may be formed from slot antenna structures. A slot antenna structure may be formed from portions of a metal housing for an electronic device. The slots of the slot antenna structures may be indirectly fed to form first and second indirectly fed slot antennas. The first and second indirectly fed slot antennas may be formed from slots in a rear surface of an electronic device and a sidewall of the electronic device. The slots may have open ends along an edge of the sidewall and may have closed ends that face each other. A hybrid antenna may also be formed in the electronic device.
Abstract:
An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure such as a speaker enclosure, so that interior space within the electronic device that is occupied by a speaker can be used in forming an antenna. A speaker driver may be mounted in the speaker enclosure. Openings in the speaker enclosure may allow sound from the speaker driver to be emitted from the speaker enclosure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from a strip of metal with a width that loops around the speaker enclosure. Openings in the second loop antenna resonating element may be aligned with the speaker enclosure openings.
Abstract:
An electronic device may be provided with slot antennas. A slot antenna may be formed from metal structures that have a dielectric gap defining an antenna slot. The metal structures may include multiple metal layers that overlap a plastic antenna window and that serve as capacitive electrodes in a capacitive proximity sensor. The metal structures may also include a metal electronic device housing. The metal electronic device housing and the metal layers may be formed on opposing sides of the antenna slot. The metal layers may have a notch that locally widens the antenna slot at an open end of the antenna slot. One of the metal layers may be shorted to the metal electronic device housing at an opposing closed end of the antenna slot. The antenna slot may be indirectly fed using a near-field-coupled antenna feed structure such as a metal patch that overlaps the antenna slot.
Abstract:
An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure such as a speaker enclosure, so that interior space within the electronic device that is occupied by a speaker can be used in forming an antenna. A speaker driver may be mounted in the speaker enclosure. Openings in the speaker enclosure may allow sound from the speaker driver to be emitted from the speaker enclosure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from a strip of metal with a width that loops around the speaker enclosure. Openings in the second loop antenna resonating element may be aligned with the speaker enclosure openings.
Abstract:
An electronic device may be provided with a satellite positioning system slot antenna. The slot antenna may include a slot in a metal housing. The slot may be directly fed or indirectly fed. In indirectly fed configurations, the antenna may include a near-field-coupled antenna feed structure that is near-field coupled to the slot. The near-field-coupled antenna feed structure may be formed from a planar metal structure. The planar metal structure may be a metal patch that overlaps the slot and that has a leg that protrudes towards the metal housing. A positive antenna feed terminal may be coupled to the leg and a ground antenna feed terminal may be coupled to the metal housing.
Abstract:
An electronic device may be provided with slot antennas. A slot antenna may be formed from metal structures that have a dielectric gap defining an antenna slot. The metal structures may include multiple metal layers that overlap a plastic antenna window and that serve as capacitive electrodes in a capacitive proximity sensor. The metal structures may also include a metal electronic device housing. The metal electronic device housing and the metal layers may be formed on opposing sides of the antenna slot. The metal layers may have a notch that locally widens the antenna slot at an open end of the antenna slot. One of the metal layers may be shorted to the metal electronic device housing at an opposing closed end of the antenna slot. The antenna slot may be indirectly fed using a near-field-coupled antenna feed structure such as a metal patch that overlaps the antenna slot.
Abstract:
An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.
Abstract:
An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.
Abstract:
An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from multiple antenna resonating element subloops. The second loop antenna resonating element may be formed from a strip of metal with a width that loops around the dielectric carrier. An opening in the metal may separate first and second subloop antenna resonating elements from each other in the second loop antenna resonating element. Openings in the metal may form metal segments that collectively form an inductance for the first subloop. Antenna currents may flow through metal traces on the carrier and portions of an electronic device housing wall.