Abstract:
An enclosure system is provided having a shroud configured to cover at least a portion of a shaft. The shroud includes an input port and an output port. The input port is configured to accept at least one of a coating tool and an abrasive supplying tool. The output port is connected to a vacuum system.
Abstract:
Braze materials and processes for using braze materials, such as for use in the manufacturing, coating, repair, and build-up of superalloy components. The braze material contains a plurality of first particles of a metallic material having a melting point, and a plurality of second particles comprising at least one nonmetallic material chosen from the group consisting of oxides, carbides, and nitrides of at least one metal. The nonmetallic material is more susceptible to heating by microwave radiation than the metallic material of the first particles, and the nonmetallic material is present in the braze material in an amount sufficient to enable the first particles to completely melt when the first and second particles are subjected to heating by microwave radiation.
Abstract:
Braze materials and processes for using braze materials, such as for use in the manufacturing, coating, repair, and build-up of superalloy components. The braze material contains a plurality of first particles of a metallic material having a melting point, and a plurality of second particles comprising at least one nonmetallic material chosen from the group consisting of oxides, carbides, and nitrides of at least one metal. The nonmetallic material is more susceptible to heating by microwave radiation than the metallic material of the first particles, and the nonmetallic material is present in the braze material in an amount sufficient to enable the first particles to completely melt when the first and second particles are subjected to heating by microwave radiation.
Abstract:
The invention is a class of nickel-base alloys for gas turbine applications, comprising, by weight, about 13.7 to about 14.3 percent chromium, about 5.0 to about 10.0 percent cobalt, about 3.5 to about 5.2 percent tungsten, about 2.8 to about 5.2 percent titanium, about 2.8 to about 4.6 percent aluminum, about 0.0 to about 3.5 percent tantalum, about 1.0 to about 1.7 percent molybdenum, about 0.08 to about 0.13 percent carbon, about 0.005 to about 0.02 percent boron, about 0.0 to about 1.5 percent niobium, about 0.0 to about 2.5 percent hafnium, about 0.0 to about 0.04 percent zirconium, and the balance substantially nickel. The nickel-base alloys may be provided in the form of useful articles of manufacture, and which possess a unique combination of mechanical properties, microstructural stability, resistance to localized pitting and hot corrosion in high temperature corrosive environments, and high yields during the initial forming process as well as post-forming manufacturing and repair processes.
Abstract:
A braze formulation for superalloys including nickel, chromium, optionally, cobalt, optionally, aluminum, optionally, boron, hafnium and tantalum, said braze formulation having a solidus temperature of no greater than about 1180° C. and a liquidus temperature of no greater than about 1250° C. Methods for brazing are also provided. The brazing formulations are robust with good ductility and have minimal embrittled phases or otherwise decreased braze integrity.
Abstract:
A metallic structure having a graded microstructure is provided. The metallic structure comprises a graded region comprising a plurality of grains having a gradient in grain size varying as a function of position between a first median grain size at an outer region and a second median grain size at an inner region and a plurality of dispersoids dispersed within the microstructure. The first median grain size is different from the second median grain size. A method of forming a metallic structure having a graded microstructure is also provided. The method comprises: providing a metallic structure comprising at least one reactive species; diffusing at least one reactant at a controlled rate from an outer region of the metallic structure towards an inner region of the metallic structure to form a gradient in reactant activity; reacting the reactant with the reactive species to form a plurality of dispersoids; and heat treating the metallic structure to achieve grain growth so as to form a graded microstructure.