摘要:
An ion implanter is disclosed. One such ion implanter includes an ion beam source configured to generate oxygen, nitrogen, helium, or hydrogen ions into an ion beam with a specific dose range, and an analyzer magnet configured to remove undesired species from the ion beam. The ion implanter includes an electrostatic chuck having a backside gas thermal coupling that is configured to hold a single workpiece for silicon-on-insulator implantation by the ion beam and is configured to cool the workpiece to a temperature in a range of approximately 300° C. to 600° C.
摘要:
A technique for uniformity tuning in an ion implanter system is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for ion beam uniformity tuning. The method may comprise generating an ion beam in an ion implanter system. The method may also comprise tuning one or more beam-line elements in the ion implanter system to reduce changes in a beam spot of the ion beam when the ion beam is scanned along a beam path. The method may further comprise adjusting a velocity profile for scanning the ion beam along the beam path such that the ion beam produces a substantially uniform ion beam profile along the beam path.
摘要:
An ion implanter includes a source of a stationary, planar ion beam, a set of beamline components that steer the ion beam along a normal beam path as determined by first operating parameter values, an end station that mechanically scans the wafer across the normal beam path, and control circuitry that responds to a glitch in the ion beam during implantation pass to (1) immediately alter an operating parameter of at least one of the beamline components to a second value to direct the ion beam away from the normal beam path and thereby cease implantation at an implantation transition location on the wafer, (2) subsequently move the wafer to an implantation-resuming position in which the implantation transition location on the wafer lies directly on the normal path of the ion beam, and (3) return the operating parameter to its first value to direct the ion beam along the normal beam path and resume ion implantation at the implantation transition location on the wafer. The operating parameter may be an output voltage of an extraction power supply, or other voltages and/or currents of beamline components that affect the path of the ion beam.