Abstract:
A side-by-side or eccentric sheath-core bicomponent fiber wherein each component comprises a different poly(trimethylene terephthalate) composition and wherein at least one of the compositions comprises styrene polymer dispersed throughout the poly(trimethylene terephthalate), and preparation and use thereof.
Abstract:
Provided are a method and apparatus for making a cigarette filter assembly for potentially reducing particle breakthrough. The method includes forming a lofty porous network of charge retaining polymer fibers by mechanical, chemical or thermal bonding of the fibers, wrapping the lofty porous network in a cylindrical or tubular shape with optional mediating filter fibers in a filter paper to form a filter plug while maintaining the lofty structure. The charge retaining fibers can be charged to attract and hold particles from such sources as particulate matter from sorbents (preventing break-through), and smoke constituents while having a suitable pressure drop. The apparatus handles the lofty media with minimal crushing, for example, by spacing apart delivery rolls equipped with protrusions to punch, push, and/or pull the lofty media ahead for high speed operation.
Abstract:
This invention relates to poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) biconstituent filaments, methods for making the same and end uses thereof.
Abstract:
Improved staple fibers and processes for producing them are provided. The processes are particularly useful for forming staple fibers from poly(trimethylene terephthalate), especially carpet staple fibers. The processes include prewetting undrawn yarns and drawing the fibers under wet and warm conditions, thermo-fixing the texture, and drying at relatively low temperatures. Fibers produced according to the processes disclosed herein have improved properties and reduced brittleness as compared to fibers prepared using conventional processes.
Abstract:
Provided is a cigarette filter and method for potentially reducing particle breakthrough. The filter includes an adsorbent including adsorbent particles dispersed within the filter and a plug of electrostatically charged fibers. Preferably, the adsorbent is activated carbon. In a preferred embodiment, the electrostatically charged fiber material is located downstream of the activated carbon. Preferably, the electrostatically charged fiber material has permanent electrostatic charges that electrostatically capture the carbon particles to reduce carbon particle breakthrough. In an embodiment, the electrostatically charged fiber material is randomly-oriented so as to mechanically capture particles entrained in mainstream smoke.
Abstract:
A process for preparing poly(trimethylene terephthalate) fibers including (a) providing a poly(trimethylene terephthalate) composition comprising about 0.05 to about 10 weight % ionomer and (b) spinning the polymer composition to form fibers. In addition, a poly(trimethylene terephthalate) fiber including poly(trimethylene terephthalate) with about 0.1 to about 10 weight % ionomer dispersed throughout the poly(trimethylene terephthalate), and use thereof in yarns, fabrics, and carpets, as well as the yarns, fibers and fabrics.
Abstract:
A process for preparing poly(trimethylene dicarboxylate) multifilament yarns and monofilaments. One process for preparing poly(trimethylene dicarboxylate) multifilament yarns includes (a) providing a polymer blend including poly(trimethylene dicarboxylate) and about 0.1 to about 10 weight % styrene polymer, by weight of the polymer in the polymer blend, (b) spinning the polymer blend to form poly(trimethylene dicarboxylate) multiconstituent filaments containing dispersed styrene polymer, and (c) processing the multiconstituent filaments into poly(trimethylene dicarboxylate) multifilament yarn including poly(trimethylene dicarboxylate) multiconstituent filaments containing styrene polymer dispersed throughout the filaments. Another process includes spinning at a speed of at least 3,000 m/m and processing a blend including poly(trimethylene dicarboxylate) to form partially oriented poly(trimethylene dicarboxylate) multifilament yarn. A poly(trimethylene terephthalate) yarn including poly(trimethylene terephthalate) multiconstituent filament containing styrene polymer dispersed throughout the multiconstituent filament. The invention is also directed to uses of the filament yarns and monofilament.