摘要:
An optical unit with shake correcting function may include a movable module on which an optical element is mounted, a fixed body which supports the movable module, a shake detection sensor which detects a shake of the movable module, a shake correction magnetic drive mechanism which swings the movable module on the fixed body on a basis of a detection result of the shake detection sensor to correct the shake of the movable module, and a spring member which is connected with the fixed body and the movable module. A stopper mechanism may be structured between the movable module and the fixed body, and the stopper mechanism may moving ranges of the movable module due to the shake.
摘要:
An optical pickup device includes a semiconductor laser for emitting forward and backward laser light from front and back emergent end faces thereof, focusing device for focusing the forward laser light emergent from the front emergent end face of said semiconductor laser onto an optical recording medium, a light-receiving element for signal reproduction for detecting return light from the optical recording medium, and a light-guiding system for guiding the return light to said light-receiving element for signal reproduction, said optical pickup device being provided with a light source unit having an arrangement in which said semiconductor laser and said light-receiving element for signal reproduction being incorporated in a common package and shielding device, disposed inside said package of said light source unit, for preventing the light emitted from said semiconductor laser from being incident upon said light-receiving element for signal reproduction.
摘要:
A laser beam emission apparatus that may be used as a universal optical pickup laser light source. The apparatus may be used in various applications including recording/reproduction of data to/from various types of optical disks in various recording/reproducing modes. The apparatus includes a first semiconductor laser chip that emits a first laser beam at a first wavelength, and a second semiconductor laser chip that emits a second laser beam at a second wavelength different from the first wavelength. The emitted second laser beam has a plane of polarization that is perpendicular to the plane of polarization of the emitted first laser beam. The apparatus further includes a polarized beam splitter that transmits one of the laser beams and reflects the other laser beam, and a semiconductor substrate that has the laser chips and the polarized beam splitter mounted thereon. The polarized beam splitter is mounted on the semiconductor substrate in a manner such that a polarized light division surface of the polarized beam splitter is perpendicular to the substrate surface of the semiconductor substrate, and the principal optical axes of the first and second laser beams intersect at a single point on the polarized light division surface and also lie in the same plane. The plane is positioned apart from the substrate surface of the semiconductor substrate, and is perpendicular to the polarized light division surface of the polarized beam splitter.
摘要:
The lens drive device is equipped with a first supporting body that holds the lens and is movable in the direction of the optical axis, a second supporting body that holds the first supporting body, a fixed body that holds the second supporting body in a manner enabling movement in directions that are roughly orthogonal to the optical axis direction, a first drive mechanism for driving the first supporting body, a second drive mechanism for driving the second supporting body in a first direction, and a third drive mechanism for driving the second supporting body in a second direction. The first supporting body is supported by the second supporting body by means of first supporting members which are formed from an elastic material; and the second supporting body is supported by the fixed body by means of second supporting members, which are formed from an elastic material.
摘要:
A photographic optical device may include a movable module having a camera module on which a lens and an imaging element are mounted, a support body, and a shake correction mechanism. The movable module may be provided with a sensor for detecting an inclination of the camera module and a cover member which structures an outer peripheral face of the movable module. The shake correction mechanism may be provided with a swing drive mechanism for swinging the movable module so that the optical axis is inclined. The swing drive mechanism may be provided with a drive magnet and a drive coil.
摘要:
An optical imaging device, wherein an imaging unit is displaced to correct the vibrations, and the imaging unit is supported on a stationary object by a total of four suspension wires. A first imaging unit drive mechanism and a second imaging unit drive mechanism are provided as a pair at two positions on either side of the optical axis L. In the imaging unit drive mechanisms, imaging unit drive magnets, are held on the imaging unit side, which is the movable side, and imaging unit drive coils, are held on the stationary object side.
摘要:
A photographic optical device may include a movable module having a camera module on which a lens and an imaging element are mounted, a support body, and a shake correction mechanism. The movable module may be provided with a sensor for detecting an inclination of the camera module and a cover member which structures an outer peripheral face of the movable module. The shake correction mechanism may be provided with a swing drive mechanism for swinging the movable module so that the optical axis is inclined. The swing drive mechanism may be provided with a drive magnet and a drive coil.
摘要:
Provided is an optical imaging device which improves the structure of an imaging unit drive mechanism for vibration correction in an imaging unit and can reliably correct the vibrations. An optical imaging device, wherein an imaging unit is displaced to correct the vibrations, and the imaging unit is supported on a stationary object by a total of four suspension wires. A first imaging unit drive mechanism and a second imaging unit drive mechanism are provided as a pair at two positions on either side of the optical axis L. In the imaging unit drive mechanisms, imaging unit drive magnets, are held on the imaging unit side, which is the movable side, and imaging unit drive coils, are held on the stationary object side.
摘要:
An optical unit with shake correcting function may include a movable module having a lens, a fixed body supporting the movable module, a shake detection sensor for detecting shake of the movable module, and at least one pair of magnetic drive mechanism for shake correction which is structured on both sides of the movable module so that the movable module is swung with respect to the fixed body on the basis of detection result of the shake detection sensor to correct the shake of the movable module. The magnetic drive mechanism for shake correction is disposed so that a shake correction magnet is held by the fixed body and a shake correction coil is held by the movable module. Further, a shake correction coil may be disposed in a first region, where magnetic lines of force generated by a shake correction magnet are directed in directions generally going away from a supporting point part and/or a second region where magnetic lines of force generated by the shake correction magnet are directed in directions generally going toward the supporting point part.
摘要:
A photographic optical device may include a reflection type optical sensor comprising a light emitting element and a light receiving element; a support body to which the reflection type optical sensor is fixed; a camera module comprising a lens and an imaging element; a shake correction mechanism structured to swing the camera module; a resistor configured to convert an output current of the light receiving element to an output voltage; a home position voltage creating means configured to create a home position voltage; a comparator configured to compare the home position voltage with a predetermined reference voltage; and a variable current source configured to control an electric current supplied to the light emitting element based on an output signal from the comparator. A relative position of the camera module with respect to the support body may be detected by the reflection type optical sensor.