Abstract:
Disclosed is a method of growing a diamond, including the steps of providing a diamond seed in a reaction chamber; providing a protective layer above the diamond seed; providing a catalyst above the protective layer; providing a carbon source above the catalyst; applying pressure to the reaction chamber; heating the catalyst to a first temperature; holding the first temperature for a first duration; heating the catalyst to a second temperature; and holding the second temperature for a second duration.
Abstract:
An apparatus for growing a synthetic diamond comprises a growth chamber, at least one manifold allowing access to the growth chamber, and a plurality of safety clamps positioned on opposite sides of the growth chamber; wherein the growth chamber and the plurality of safety clamps are comprised of a material having a tensile strength of about 120,000-200,000 psi, a yield strength of about 100,000-160,000 psi, an elongation of about 10-20%, an area reduction of about 40-50%, an impact strength of about 30-40 ft-lbs, and a hardness greater than 320 BHN.
Abstract:
An apparatus for growing a synthetic diamond comprises a growth chamber, at least one manifold allowing access to the growth chamber, and a plurality of safety clamps positioned on opposite sides of the growth chamber; wherein the growth chamber and the plurality of safety clamps are comprised of a material having a tensile strength of about 120,000-200,000 psi, a yield strength of about 100,000-160,000 psi, an elongation of about 10-20%, an area reduction of about 40-50%, an impact strength of about 30-40 ft-lbs, and a hardness greater than 320 BHN.
Abstract:
An adapter is designed to connect a member such as a shaft to the hub forming the output element of an actuator. The adapter includes a connection feature which attaches to the member, and a shaft which mates with the bore in the actuator hub. The adapter has a resilient arm attached to the end of the shaft and which extends through the bore. The shaft also carries a stop element. The arm carries a retainer feature at its end. With the shaft mated with the bore, when the arm is undeflected the retainer feature engages an adjacent end surface of the hub to lock the adapter into place. The arm can be deflected to disengage the retainer feature from the hub and allow the adapter to be removed. In one embodiment, the end surface of the hub and the retainer surface are beveled or slanted to strongly oppose axial loads and yet to allow the adapter to withdraw from the hub's bore upon deflecting the arm.