Abstract:
The invention provides methods for treating tumors and tumor metastases in a mammal comprising administering, to a mammal in need of treatment, a therapeutic amount of an antagonist sufficient to inhibit angiogenesis in combination with a therapeutic amount of anti-tumor immunotherapeutic agent, such as a anti-tumor antigen antibody/cytokine fusion protein having a cytokine and a recombinant immunoglobulin polypeptide chain sufficient to elicit a cytokine-specific biological response.
Abstract:
The present invention describes methods for inhibition angiogenesis in tissues using vitronectin αvβ3 antagonists, and particularly for inhibiting angiogenesis in inflamed tissues and in tumor tissues and metastases using therapeutic compositions containing αvβ3 antagonists.
Abstract:
The present invention describes methods for inhibition angiogenesis in tissues using vitronectin αvβ3 antagonists, and particularly for inhibiting angiogenesis in inflamed tissues and in tumor tissues and metastases using therapeutic compositions containing αvβ3 antagonists.
Abstract:
The present invention describes methods for inhibiting angiogenesis in tissues using vitronectin .alpha..sub.v .beta..sub.3 antagonists, and particularly for inhibiting angiogenesis in inflamed tissues and in tumor tissues and metastases using therapeutic compositions containing .alpha..sub.v .beta..sub.3 antagonists.
Abstract:
The present invention is directed to methods and compositions for suppressing lymphangiogenesis, angiogenesis and/or tumor growth. The methods comprise contacting the tumor with a compound that (i) stabilizes a protein kinase in the inactive state and (ii) is not an ATP competitive inhibitor of the protein kinase in the active state.
Abstract:
The present invention is directed to methods and compositions for suppressing lymphangiogenesis, angiogenesis and/or tumor growth. The methods comprise contacting the tumor with a compound that (i) stabilizes a protein kinase in the inactive state and (ii) is not an ATP competitive inhibitor of the protein kinase in the active state.
Abstract:
This invention relates to the discovery of the convergence of diverse receptors and signaling pathways on the PI3gamma dependent activation of VLA4 (integrin a4b1). In particular, the invention relates to the role of myeloid cells in tumor inflammation and metastasis. The invention provides methods for inhibiting cancer in a subject comprising administering to a subject having cancer that comprises endothelial cells a therapeutically effective amount of a PI-3-kinase gamma inhibitor that reduces at least one of (a) adhesion of myeloid cells to the endothelial cells, (b) migration of myeloid cells into the cancer, (c) growth of the cancer, (d) activation of integrin a4b1 that is comprised on the myeloid cells, and (e) clustering of integrin a4b1 that is comprised on the myeloid cells.
Abstract:
The present invention describes methods for inhibition angiogenesis in tissues using vitronectin αvβ3 antagonists, and particularly for inhibiting angiogenesis in inflamed tissues and in tumor tissues and metastases using therapeutic compositions containing αvβ3 antagonists.
Abstract:
Angiogenesis, tumor growth, and metalloproteinase 2 (MMP2) interaction with integrin-αvβ3 are inhibited by an inhibitor compound of formula (I): wherein G1 and G2 are each independently NH—C(O)—O—R1, —NH—C(O)—O—(CH2)v—(C6H4)—X3, —NH—C(O)—NH—(CH2)v—(C6H4)—X3, —O—C(O)—NH—(CH2)v—(C6H4)—X3, —O—C(O)—O—(CH2)v—(C6H4)—X3, or NH—C(O)—CH2—(C6H4)—X3; Y1 and Y2 are each independently OH, C1–C4 alkyl, C1–C4 hydroxyalkyl, C1–C4 alkoxy, phenyl, benzyl, or NH2; R1 is C1–C4 alkyl; X1 and X2 are each independently halo or C1–C4 alkoxy; X3 is halo, nitro, C1–C4 alkyl, C1–C4 alkoxy, or C1–C4 perfluoroalkyl; Z is —C≡C—, —C6H4—, cis-CH═CH—, trans CH═CH—, cis-CH2—CH═CH—CH2—, trans —CH2—CH═CH—CH2—, 1,4-naphthyl, cis-1,3-cyclohexyl, trans-1, 3-cyclohexyl, cis-1,4-cyclohexyl, or trans-1,4-cyclohexyl; A is H or a covalent bond; m and n are each independently an integer having a value of 0 or 1; t is an integer having a value of 0 or 1; and p, r, and v are each independently an integer having a value of 1 or 2; with provisos that when A is H, t is O; when A is a covalent bond, t is 1; when m is 0, Y1 is C1–C4 hydroxyalkyl; and when n is 0, Y2 is C1 C4 hydroxyalkyl.
Abstract:
Compounds which inhibit tumor growth and angiogenesis, of general formula (II) are provided. These compounds include glycyl lysine derivatives bound to a central aromatic linking core.