Abstract:
A method and system to support simultaneous unlatching from a rack of two or more adjacently mounted and vertically aligned hardware components. One interface bracket is secured to one vertical rail of the rack, and a second interface bracket is secured to a second vertical rail of the rack on an opposite side of the rack. A set of latches are provided in communication with each interface bracket, with the number of latches corresponding to the number of hardware components in communication with the interface bracket. Actuation of one of the latches releases fastening of at least one hardware components from the rack, and accommodates removal of the release component from the rack.
Abstract:
An air moving device assembly in a computer system has an air moving device such as a fan or blower within a housing for moving air from an air inlet to an air outlet. A mesh with a plurality of openings covers the air outlet. A back flow damper assembly is positioned over the air outlet. The back flow damper assembly further comprises at least one damper door movable in an open position and a closed position. The damper door has at least one tooth such that when the damper door is in the closed position, the tooth interacts with at least one of the plurality of openings in the mesh. By periodically cycling the air moving device controlled by device management software, the teeth will close and open, loosening debris from the mesh, allowing the debris to be blown out the rear of the housing once the device is turned back on.
Abstract:
A dual member handle system and method of operating the same. The system includes a body, a first handle rotably attached to the body, and a second handle rotably attached to the body. The first handle is attached adjacent the second handle. The first handle rotates about a first axis and the second handle rotates about a second axis that is different from the first axis. The method includes rotating a first handle about a first axis and rotating a second handle, while rotating the first handle, about a second axis. The second axis is adjacent to and different from the first axis.
Abstract:
A rail for toolless installation between first and second vertical rack rails. The rail comprises a telescoping rail body having a first and second ends, and an inside surface having a shelf, wherein a latch assembly is disposed at each end of the rail body. Each latch assembly comprises a flange secured to an end of the rail, a latch arm, a release handle, and a retractable pin. The latch arm is pivotally secured to the rail body, distally extends from the flange, and is biased toward a latched position. The release handle is on the inside surface of the rail body for movement from a latched position to an unlatched position. The retractable pin distally extends from each end and is biased toward a distally extended position, wherein the pin is stepped from a first diameter portion to a second larger diameter portion for adapting to different sized holes.
Abstract:
A drive-removal mechanism may include, but is not limited to: at least one rotatable member; and at least one drive-engaging member operably coupled to the at least one rotatable member, wherein the drive-removal mechanism is detached from at least one drive to be removed. A drive enclosure may include, but is not limited to: at least one drive-receiving member including at least one drive-receiving channel; and at least one drive-removal mechanism including: at least one rotatable member; and at least one drive-engaging member operably coupled to the at least one rotatable member, wherein the drive-removal mechanism is configured to at least partially remove at least one hot swappable drive from the at least one drive-receiving channel.
Abstract:
An apparatus is provided and includes a housing, including a housing mating device, through which an installation path for an assembly is defined with a space in which a first part is positioned, a backplane body having opposing faces on which a second part and a backplane mating device are respectively disposed, and a hub, in which a hub mating device is defined, and from which a two-stage mating device extends, the two-stage mating device including first and second elastically coupled stages. The hub and the backplane body are coupled to form the assembly and the assembly is installed/removed in/from the space with the second stage of the two-stage mating device elastically hooked by the housing mating device or released from the housing mating device and the first and second stages of the two-stage mating device biasing the hub and the backplane body to remain coupled.
Abstract:
A quick access display with a small screen is physically attached to the outside of a laptop computer. Selected and key information in formatted display frames is electronically pushed to the quick access display by an application program loaded to run on the laptop computer's operating system. The formatted display frames are communicated over a universal serial bus (USB), or wirelessly by radio frequency identification (RFID) chips, BLUETOOTH, or IEEE-802.11 Wi-Fi. Operating power for the quick access display is provided by long-life watch batteries and the electronics are implemented in low power MOS technologies.
Abstract:
An air moving device assembly in a computer system has an air moving device such as a fan or blower within a housing for moving air from an air inlet to an air outlet. A mesh with a plurality of openings covers the air outlet. A back flow damper assembly is positioned over the air outlet. The back flow damper assembly further comprises at least one damper door movable in an open position and a closed position. The damper door has at least one tooth such that when the damper door is in the closed position, the tooth interacts with at least one of the plurality of openings in the mesh. By periodically cycling the air moving device controlled by device management software, the teeth will close and open, loosening debris from the mesh, allowing the debris to be blown out the rear of the housing once the device is turned back on.
Abstract:
An electronic module rack system includes a rack housing and opposing first and second rail members attached to the housing. A stabilizer bar is attached to the first and second rail members. The rail members support a cable trough assembly, and at least one cable separator retainer extends from the cable trough assembly. A method for managing cables for an electronic module includes connecting a first cable to the electronic module and connecting a second cable to the electronic module. The first cable is placed in a cable trough assembly and the second cable is placed in a cable separator retainer extending from the cable trough assembly. A cable support system includes a cable trough assembly and means for supporting cables outside the cable trough assembly.
Abstract:
A method of forming an assembly for tool-less backplane retention and insertion thereof into a housing including a housing mating device through which an installation path for an assembly is defined with a space in which a first part is positioned is provided. The method includes coupling a hub and a backplane body having opposing faces on which a second part and a backplane mating device are respectively disposed. The coupling includes inserting a backplane mating device protruding from one of the opposing faces of the backplane body through a hub mating device defined in the hub. The method further includes forcing a first stage of a two-stage mating device, which includes first and second elastically coupled stages and which extends from the hub, to elastically hook onto the backplane body during a near-completion of the insertion.