摘要:
An MR image of a subject is displayed on a display device. Scan-control icons are displayed over this image. An operator interacts with an interface device to select imaging plane parameters during imaging. This is performed by selecting one of the icons with a pointing device, and dragging. Interface device then provides a display which indicates the motion of the imaging plane as well as the extent of the motion. Once selected, the location and orientation information transformed to global coordinates and is provided to a pulse sequencer of a magnetic resonance (MR) imaging system. The pulse sequencer controls an RF transmitter and gradient amplifiers to cause an MR image of the subject at an imaging plane to be acquired. This allows fast, accurate imaging plane selection, which may be selected by an operator who is searching for structures within the subject, or who is simultaneously performing a medical procedure on the subject.
摘要:
A magnetic resonance (MR) imaging system for use in a medical procedure employs an open main magnet allowing access to a portion of a patient within an imaging volume, for producing a main magnetic field over the imaging volume; a set of open gradient coils which provide magnetic fields gradients over the imaging volume without restricting access to the imaging volume; a radiofrequency coil set for transmitting RF energy into the imaging volume to nutate nuclear spins within the imaging volume and receive an MR response signal from the nuclear spins; and a pointing device for indicating the position and orientation of a plane in which an image is to be acquired; an image control means for operating power supplies for the gradient coils and the RF coils to acquire an MR signal from the desired imaging plane; and a computation unit for constructing an image of the desired imaging plane. The MR imaging system is intended to operate to provide images to a physician during medical procedures to guide the physician in his procedures.
摘要:
Surgery is performed with a pulsed heat-producing device that selectively heats a region in a specific tissue within a patient destroying the tissue. The pulsed heat-producing device may be a coherent optical source that is guided by laser fiber to the tissue to be destroyed. In another embodiment, the pulsed heat-producing device is a focussed ultrasound transducer which concentrates ultrasonic energy at a focal point within the specific tissue. A magnetic resonance imaging system employing a real-time temperature-sensitive pulse sequence monitors the heated region of the tissue to provide temperature profiles allowing an operator to alter the position and size of the heated region.
摘要:
A method of reducing slice profile degradation due to gradient signal amplitude ripple, has steps of: sensing the gradient signal ripple amplitude; normalizing the sensed ripple signal amplitude responsive to the gradient amplitude commanded; and modulating the RF signal amplitude with the adjusted-amplitude ripple signal, to cause the RF and gradient magnetic fields to have an effective vector pointing substantially in the same direction, during the slice-selection interval, as would the effective field vector formed with a gradient field devoid of ripple. Apparatus for reducing the slice profile degradation modulates the RF signal with the ripple envelope obtained from the output of the gradient signal amplifier, by a signal controlled by the gradient amplifier input.
摘要:
A method of suppressing at least one undesired resonance response signal while facilitating reception of at least one other desired NMR response signal from a coupled spin resonance in NMR spectroscopy, utilizes a pair of alternating sequences of RF signal pulses, with each sequence having an initial .pi./2 RF pulse, followed by a .pi. RF signal pulse having a temporal midpoint at a time interval T after the temporal midpoint of the initial pulse (where T=n/4J, with n being an odd integer and J being the spin coupling constant of the hydrogen nuclei) and a final .pi. RF signal pulse with a temporal midpoint at twice the time interval T after the temporal midpoint of the first .pi. RF signal pulse in that sequence. Only one of the pair of sequences is provided with a polarization transfer narrowband .pi. RF signal pulse symmetrically disposed about a temporal midpoint located at substantially a time interval T after the first .pi. RF signal pulse of that sequence and substantially at a frequency removed from the resonance frequency of at least one undesired uncoupled spin resonance. Response signals are acquired within a gating period including a temporal point thereof occurring at a time interval T after the temporal midpoint of the final .pi. RF signal pulse. The pair of recovered sets of data are substracted from one another to obtain a final data set in which noncoupled spin resonance data is substantially cancelled but desired coupled spin resonance data is preserved.
摘要:
An NMR system performs in vivo localized NMR spectroscopy. A two-dimensional selective RF excitation pulse is used to localize to a cylindrical region of interest, and either phase encoding or slice selective inversion is used to localize to a disk in the cylindrical region of interest. The two-dimensional selective RF excitation is performed in a series of pulse sequences rather than a single pulse sequence, and the resulting series of acquired NMR signals are summed together to substantially cancel signal conributions from outside the cylindrical region of interest.
摘要:
An NMR antenna probe has at least one substantially circular surface coil arranged in a plane and a surface coil having substantially a Figure-8 shape, substantially coplanar with the at least one circular surface coil. The Figure-8 coil has a cross-over portion which is located substantially coaxial with the axis of the at least one circular surface coil. The coil corresponding to the least-NMR-sensitive nucleus is circular, while the non-circular coil corresponds to the most-NMR-sensitive nucleus. The circular coil is positioned on the side of the NMR probe closest to the subject to be studied.
摘要:
A method for the complete inversion of magnetization by adiabatic fast passage during an NMR experiment on a sample having a selected nuclear specie with a Larmor frequency .omega..sub.0. A radio-frequency magnetic field is generated with an amplitude B.sub.1 and an instantaneous frequency .omega.(t) which is non-linearly swept, as a function of time, from a minimum frequency .omega..sub.1 substantially at a maximum offset frequency .DELTA..omega. below the Larmor frequency .omega..sub.0, through the Larmor frequency, to a maximum frequency .omega..sub.h substantially at the maximum offset frequency .DELTA..sub..omega. above the Larmor frequency. The non-linearly swept, monotonic RF signal is applied to the sample-being-investigated for a sweep time interval sufficient to invert the magnetization of the selected nuclear specie. The preferred sweep is a tangential function:.omega.(t)=.omega..sub.0 .+-..gamma.B.sub.1 tan (arcsin (.omega..sub.s t)), (A)or.omega.(t)=.omega..sub.0 .+-..gamma.B.sub.1 tan (.omega..sub.s t)where .omega..sub.s =.alpha..gamma.B.sub.1, .gamma. is the gyromagnetic ratio of the selected nuclear specie and 0
摘要:
Imaging parameters, such as the location, orientation and field of view of an imaging plane are selected. These parameters are provided to a pulse sequencer of a magnetic resonance (MR) scanner which modifies an MR pulse sequence to acquire an image at the selected imaging plane. The pulse sequencer controls an RF transmitter and gradient amplifiers to cause an MR image of the subject at an imaging plane to be acquired. The MR image is displayed on a display device. An interface device receives and reduces the MR image to an image icon and saves the image icon along with the corresponding imaging parameters. The image icons are displayed on the periphery of the screen around an MR image. An operator may then view and select one of the image icons, employing the pointing device. This causes the imaging parameters corresponding to the selected image icon to be sent to the pulse sequencer thereby causing an MR image to be acquired with these imaging parameters.
摘要:
Surgery is performed with a pulsed heat-producing device that selectively heats a region in a specific tissue within a patient destroying the tissue. The pulsed heat-producing device may be a coherent optical source that is guided by laser fiber to the tissue to be destroyed. In another embodiment, the pulsed heat-producing device is a focussed ultrasound transducer which concentrates ultrasonic energy at a focal point within the specific tissue. A magnetic resonance imaging system employing a real-time temperature-sensitive pulse sequence monitors the heated region of the tissue to provide temperature profiles allowing an operator to alter the position and size of the heated region.