摘要:
Described herein is a device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light.
摘要:
An embodiment relates to an image sensor comprising (a) a optical pipe comprising a core and a cladding, and (b) a pair of photosensitive elements comprising a central photosensitive element and a peripheral photosensitive element, wherein the central photosensitive element is operably coupled to the core and the peripheral photosensitive element is operably coupled to the cladding, and methods of fabricating and using the same. The image sensor could further comprise a lens structure or an optical coupler or an optical coupler over the optical pipe, wherein the lens structure or the optical coupler or the optical coupler is operably coupled to the optical pipe.
摘要:
A photovoltaic device operable to convert light to electricity, comprising a substrate, a plurality of structures essentially perpendicular to the substrate, one or more recesses between the structures, each recess having a planar mirror on a bottom wall thereof. The structures have p-n or p-i-n junctions for converting light into electricity. The planar mirrors function as an electrode and can reflect light incident thereon back to the structures to be converted into electricity.
摘要:
Methods of optimizing the diameters of nanowire photodiode light sensors. The method includes comparing the response of nanowire photodiode pixels having predetermined diameters with standard spectral response curves and determining the difference between the spectral response of the photodiode pixels and the standard spectral response curves. Also included are nanowire photodiode light sensors with optimized nanowire diameters and methods of scene reconstruction.
摘要:
“An imaging device formed as an active pixel array combining a CMOS fabrication process and a nanowire fabrication process. The pixels in the array may include a single or multiple photogates surrounding the nanowire. The photogates control the potential profile in the nanowire, allowing accumulation of photo-generated charges in the nanowire and transfer of the charges for signal readout. Each pixel may include a readout circuit which may include a reset transistor, charge transfer switch transistor, source follower amplifier, and pixel select transistor. A nanowire is generally structured as a vertical rod on the bulk semiconductor substrate to receive light energy impinging onto the tip of the nanowire. The nanowire may be configured to function as either a photodetector or a waveguide configured to guild the light to the substrate. Light of different wavelengths can be detected using the imaging device.”
摘要:
An embodiment relates to a device comprising a substrate having a front side and a back-side, a nanowire disposed on the back-side and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire.
摘要:
An embodiment relates to a device comprising a substrate, a nanowire and a doped epitaxial layer surrounding the nanowire, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire. Another embodiment relates to a device comprising a substrate, a nanowire and one or more photogates surrounding the nanowire, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire, and wherein the one or more photogates comprise an epitaxial layer.
摘要:
An image sensor and methods of use the image sensor, methods of manufacturing the image sensor, and apparatuses comprising the image sensor are disclosed. The image sensor has pixels includes at least one nanopillar with a gate electrode surrounding the at least one nanopillar, wherein the at least one nanopillar is adapted to convert light impinging thereon to electrical signals and the gate electrode is operable to pinch off or allow current flow through the at least one nanopillar. The image sensor can have a plurality of pixels arranged in an individually addressable fashion. The at least one nanopillar has a cladding. A refractive index of the cladding being smaller than a refractive index of the nanopillar.
摘要:
An embodiment relates to an image sensor comprising (a) a optical pipe comprising a core and a cladding, and (b) a pair of photosensitive elements comprising a central photosensitive element and a peripheral photosensitive element, wherein the central photosensitive element is operably coupled to the core and the peripheral photosensitive element is operably coupled to the cladding, and methods of fabricating and using the same. The image sensor could further comprise a lens structure or an optical coupler or an optical coupler over the optical pipe, wherein the lens structure or the optical coupler or the optical coupler is operably coupled to the optical pipe.
摘要:
Methods of optimizing the diameters of nanowire photodiode light sensors. The method includes comparing the response of nanowire photodiode pixels having predetermined diameters with standard spectral response curves and determining the difference between the spectral response of the photodiode pixels and the standard spectral response curves. Also included are nanowire photodiode light sensors with optimized nanowire diameters and methods of scene reconstruction.