Abstract:
A method for outputting virtual sound includes detecting an audio signal in an environment at one or more microphones. The method also includes determining, at a processor, a location of a sound source of the audio signal and estimating one or more acoustical characteristics of the environment based on the audio signal. The method further includes inserting a virtual sound into the environment based on the one or more acoustical characteristics. The virtual sound has one or more audio properties of a sound generated from the location of the sound source.
Abstract:
A device includes a memory and a processor. The memory is configured to store a threshold. The processor is configured to authenticate a user based on authentication data. The processor is also configured to, in response to determining that the user is authenticated, generate a correlation score indicating a correlation between a first signal received from a first sensor and a second signal received from a second sensor. The processor is also configured to determine liveness of the user based on a comparison of the correlation score and the threshold.
Abstract:
A method for mapping a source location by an electronic device is described. The method includes obtaining sensor data. The method also includes mapping a source location to electronic device coordinates based on the sensor data. The method further includes mapping the source location from electronic device coordinates to physical coordinates. The method additionally includes performing an operation based on a mapping.
Abstract:
A method of operation of a device includes receiving an input signal at the device. The input signal is generated using at least one microphone. The input signal includes a first signal component having a first amount of wind turbulence noise and a second signal component having a second amount of wind turbulence noise that is greater than the first amount of wind turbulence noise. The method further includes generating, based on the input signal, an output signal at the device. The output signal includes the first signal component and a third signal component that replaces the second signal component. A first frequency response of the input signal corresponds to a second frequency response of the output signal.
Abstract:
Disclosed is an application interface that takes into account the user's gaze direction relative to who is speaking in an interactive multi-participant environment where audio-based contextual information and/or visual-based semantic information is being presented. Among these various implementations, two different types of microphone array devices (MADs) may be used. The first type of MAD is a steerable microphone array (a.k.a. a steerable array) which is worn by a user in a known orientation with regard to the user's eyes, and wherein multiple users may each wear a steerable array. The second type of MAD is a fixed-location microphone array (a.k.a. a fixed array) which is placed in the same acoustic space as the users (one or more of which are using steerable arrays).
Abstract:
A method of selectively authorizing access includes obtaining, at an authentication device, first information corresponding to first synthetic biometric data. The method also includes obtaining, at the authentication device, first common synthetic data and second biometric data. The method further includes generating, at the authentication device, second common synthetic data based on the first information and the second biometric data. The method also includes selectively authorizing, by the authentication device, access based on a comparison of the first common synthetic data and the second common synthetic data.
Abstract:
A multichannel acoustic system (MAS) comprises an arrangement of microphones, loudspeakers, and filters along with a multichannel acoustic processor (MAP) and other components to together provide and enhance the auditory experience of persons in a shared acoustic space such as, for example, the driver and other passengers in an automobile. Driver-specific features such as navigation and auditory feedback cues are described, as individual auditory customizations and collective communications both within the shared acoustic space as well as with other individuals not located in the space via enhanced conference call facilities.
Abstract:
A multichannel acoustic system (MAS) comprises an arrangement of microphones and loudspeakers and a multichannel acoustic processor (MAP) to together enhance conversational speech between two or more persons in a shared acoustic space such as an automobile. The enhancements are achieved by receiving sound signals substantially originating from relatively near sound sources; filtering the sound signals to cancel at least one echo signal detected for at least one microphone from among the plurality of microphones; filtering the sound signals received by the plurality of microphones to cancel at least one feedback signal detected for at least one microphone from among the plurality of microphones; and reproducing the filtered sound signals for each microphone from among the plurality of microphones on a subset of loudspeakers corresponding that are relatively far from the source microphone.
Abstract:
A method for encoding three dimensional audio by a wireless communication device is disclosed. The wireless communication device detects an indication of a plurality of localizable audio sources. The wireless communication device also records a plurality of audio signals associated with the plurality of localizable audio sources. The wireless communication device also encodes the plurality of audio signals.
Abstract:
Systems, devices, and methods are described for recognizing and focusing on at least one source of an audio communication as part of a communication including a video image and an audio communication derived from two or more microphones when a relative position between the microphones is known. In certain embodiments, linked audio and video focus areas providing location information for one or more sound sources may each be associated with different user inputs, and an input to adjust a focus in either the audio or video domain may automatically adjust the focus in the another domain.