Abstract:
A videoconferencing system allows a distributed group of separately addressable multipoint controller signaling layer and multipoint controller application layer units to be logically combined for the purpose of managing a videoconference with a plurality of endpoints. In some embodiments, a primary multipoint controller signaling layer unit may identify other multipoint controller signaling layer units and multipoint controller application layer units to handle requests for joining an ongoing videoconferencing session, routing such requests to the other multipoint controller signaling layer units and multipoint controller application layer units as needed.
Abstract:
A system includes a network interface for sending and receiving one or more of video data and audio data between two or more endpoints. One or more of a video data source and an audio data source located at more than one endpoint and a control unit for controlling one or more of the video data and the audio data between endpoints. The control unit is operable to execute instructions to specify more than one participant in a conference, wherein at least one participant is remotely located and invoke the conference upon receiving one or more requests to connect to the conference by one or more participants. The control unit is further operable to allocate resources upon the conference being invoked and connect participants to the conference.
Abstract:
A surveillance system incorporates desktop videophone devices to monitor workspaces in an office environment. Desktop videophones include a camera system and a network interface for transmitting image data from the camera system to a receiver, which may be configured to transmit image data from the camera to a surveillance monitoring system. Videophones are often located at office workspaces within cubes, offices, and conference rooms where walls and partitions may obstruct the view of surveillance cameras installed in open or general-use areas, such as lobbies and hallways. As such, employing desktop videophones in a surveillance capacity expands monitoring to workspaces without requiring installation of additional surveillance cameras for individual workspaces.
Abstract:
A conferencing peripheral for use with a mobile device or laptop or desktop computer can include one or more of projectors, cameras, microphones, and speakers. Such a device can work with the mobile device to provide a higher quality conferencing experience than has been provided to date by projecting a substantially full size, high resolution, image of conference participants onto a screen or wall and by providing microphones, speakers, and sufficient audio processing to provide high fidelity audio as part of the conferencing experience. The peripheral may be configured to use the voice and/or data network of the mobile device or may include its own internal network interface.
Abstract:
Disclosed are example embodiments of a method and system to reduce re-transmission requirements of a compress media transferring system implemented in a network where packet loss could be possible. An extended header for each transmitted packet can indicate the priority of the packet and endpoints can determine if a re-transmission of a missing packet is desired. Buffering of packets at different hops in a multi-hop system could allow for the retransmission request to be satisfied by a more recent hop than the original system transmitting the video packet. In one embodiment three levels of priority are established to achieve a reliable frame rate of 30 frames per second by compressing the first and second levels at 7.5 frames per second and a third level at 15 frames per second.
Abstract:
A system includes a network interface for sending and receiving at least video data between two or more endpoints, where each endpoint includes a display screen. A camera may be located at more than one endpoint capturing video data. The system also includes a control unit for controlling spatial arrangement of one or more video data streams displayed on a display screen of one or more endpoints. The control unit determines a state and configuration of a videoconference and accesses a route description corresponding to the state and configuration of the videoconference. The route description includes a video data stream destination, one or more video data stream sources, and layout information determining the spatial arrangement of one or more video data streams displayed on the video data stream destination.
Abstract:
Disclosed herein is a method and apparatus for videoconferencing that allows video images from two or more cameras at the same site to be displayed as a single panoramic image. Accordingly, a conferencing endpoint having a single monitor can display the panoramic image of the two or more video images from an endpoint having multiple cameras, such as a telepresence endpoint. A sliding display area can be used to define manually a zoomed portion of the panoramic image to be displayed. Alternatively, the zoomed portion may be determined automatically. The zoomed portion may be changed during the course of the conference.
Abstract:
Quick Response barcodes (“QR Codes”) are used for videoconferencing between a peripheral device and a videoconferencing system, which can include a conferencing server and/or a videoconferencing unit. Conferencing related QR codes are embedded within video frames and are identified by either a peripheral device or a videoconferencing unit. Once identified, the device or unit acts according to the information provided by the QR code. The QR codes enables the peripheral device, videoconferencing unit, and conferencing server to operation in conjunction with one another even though one or more of the device may not share a compatible operation platform that would allow for direct communication of requests and responses.
Abstract:
Audio from a near-end that has been acoustically coupled at the far-end and returned to the near-end unit is detected and suppressed at the near-end of a conference. First and second energy outputs for separate bands are determined for the near-end audio being sent from the near-end unit and for the far-end audio being received at the near-end unit. The near-end unit compares the first and second energy outputs to one another for each of the bands over a time delay range and detects the return of the sent near-end audio in the received far-end audio based on the comparison. The comparison can use a cross-correlation to find an estimated time delay used for further analysis of the near and far-end energies. The near-end unit suppresses any detected return by muting or reducing what far-end audio is output at its loudspeaker.
Abstract:
A system and method provide a rule-based technique for adapting a videoconferencing system to current conditions of a conference session, automatically converting the session from one conferencing technique to another, based on those current conditions. Rules may involve criteria including number of participants, ability to use a common codex, among others. An escalation module can be used to manage the transition between one type of conference session and another. If a condition occurs that causes transitioning the conference from one type to another, when that condition no longer applies, the conference may automatically transition back to the original conferencing type.