Abstract:
A noise suppression system is described for use with a laser measurement system in which a beam sampler divides the laser beam into a signal beam and a sample beam. The signal beam is passed through an optical system before being received at the detector while the sample beam is received directly at the detector. The beam sampler is selected such that the received sample beam has a slightly greater steady-state intensity than the received signal beam. The detector circuitry includes two linear wideband photodetectors which produce respective signal and sample currents of opposite polarity. The sample photocurrent is subdivided into two component currents, one of which has substantially the same direct current (DC) value as the signal photocurrent. This component is combined with the signal photocurrent to cancel undesirable noise components in the original laser beam. In a second embodiment of the invention, the dividing circuitry is controlled in a feedback loop to keep the DC portion of the output current at zero.
Abstract:
An optical frequency analyzer for measuring an optical frequency spectrum with high accuracy, high resolving power and high stability by heterodyne detecting the incident light with the aid of a local oscillator, wherein the local oscillator comprises an optical frequency synthesizer/sweeper or a marker signal attached tunable laser. The optical frequency analyzer can be modified to measure the incident light itself as the object of measurement or light emerging from the object of measurement can be the incident light.
Abstract:
Light relative to non-modulated output light emitted from a semiconductor laser is applied to an absorption cell. Frequency modulating signals are converted into amplitude modulation signals of the output light through a modulating means by utilizing absorptive properties of the absorption cell. Transmissive light outputs of the absorption cell are synchronously rectified by a lock in amplifier, and an electric current supplied to the semiconductor laser is controlled so that the output signals of the lock in amplifier are arranged to be a predetermined value. The wavelength of the output light is locked to the absorption line of the standard substance in the absorption cell. Advantageously, the invention stabilizes the instantaneous value of the oscillation frequency.
Abstract:
A circuit arrangement including a controllable optical resonator having a filter characteristic with a transmission peak arranged to pass laser radiation at a wavelength in the region of the transmission peak, wherein the resonator is positioned to receive the laser radiation at an angle such that two modes of the radiation, having respectively different polarization states, and wavelengths, are capable of propagating in the resonator. The resonator has control electrodes connected for receiving a voltage which determines the wavelength of the transmission peak of the filter characteristic and a source connected for applying to the electrodes a square-wave modulating voltage which varies between a first value which causes the transmission peak of the resonator to be substantially at the wavelength of one of the modes and a second value which causes the transmission peak of the resonator to be substantially at the wavelength of the other one of the modes. A device is optically coupled to the resonator for deriving two electrical signals each corresponding to radiation passing through the resonator in a respective one of the two modes. A device is connected for determining the phase difference between the two electrical signals and a device is connected for acting on the resonator in a manner to reduce the phase difference to zero on the basis of at least one of the electrical signals.