Abstract:
A composition comprising: a first monomer comprising at least three thiol groups, each located at a terminal end of the first monomer, wherein the first monomer is represented by the following Chemical Formula 1-1: a second monomer comprising at least two unsaturated carbon-carbon bonds, each located at a terminal end of the second monomer, wherein the second monomer is represented by the following Chemical Formula 2: wherein in Chemical Formulae 1 and 2 groups R2, Ra to Rd, Ya to Yd, L1′ and L2, X and variables k3 and k4 are the same as described in the specification, and a first light emitting particle, wherein the first light emitting particle consists of a semiconductor nanocrystal comprising a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, or a combination thereof, wherein the first light emitting particle has a core/shell structure having a first semiconductor nanocrystal being surrounded by a second semiconductor nanocrystal, and the first semiconductor nanocrystal being different from the second semiconductor nanocrystal.
Abstract:
A light source includes a light emitting element which emits light, and a light conversion layer which converts the light emitted from the light emitting element into white light and emits the white light, where the light conversion layer includes a resin and a quantum dot material mixed with the resin, and a red apex of a color region of the white light is positioned in a region of 0.65
Abstract:
A film for a backlight unit including a semiconductor nanocrystal-polymer composite film including a semiconductor nanocrystal and a matrix polymer in which the semiconductor nanocrystal is dispersed, wherein the matrix polymer is a polymer produced by a polymerization of a multifunctional photo-curable oligomer, a mono-functional photo-curable monomer, and a multifunctional photo-curable cross-linking agent, the multifunctional photo-curable oligomer has an acid value of less than or equal to about 0.1 mg of KOH/g, and a content (A1) of a first structural unit derived from the multifunctional photo-curable oligomer, a content (A2) of a second structural unit derived from the mono-functional photo-curable monomer, and a content (A3) of a third structural unit derived from the multifunctional photo-curable cross-linking agent satisfy Equation 1: A1
Abstract:
A process of synthesizing nanocrystals, the process including: obtaining a metal precursor, a non-metal precursor, a ligand compound, and an ionic liquid; and contacting the metal precursor, the non-metal precursor, the ligand compound, and the ionic liquid to form a mixture and synthesize a first semiconductor nanocrystal.
Abstract:
A film for a backlight unit including a semiconductor nanocrystal-polymer composite film including a semiconductor nanocrystal and a matrix polymer in which the semiconductor nanocrystal is dispersed, wherein the matrix polymer is a polymer produced by a polymerization of a multifunctional photo-curable oligomer, a mono-functional photo-curable monomer, and a multifunctional photo-curable cross-linking agent, the multifunctional photo-curable oligomer has an acid value of less than or equal to about 0.1 mg of KOH/g, and a content (A1) of a first structural unit derived from the multifunctional photo-curable oligomer, a content (A2) of a second structural unit derived from the mono-functional photo-curable monomer, and a content (A3) of a third structural unit derived from the multifunctional photo-curable cross-linking agent satisfy Equation 1: A1
Abstract:
A backlight unit for a liquid crystal display device, the backlight unit including: an light emitting diode (“LED”) light source; a light conversion layer disposed separate from the LED light source to convert light emitted from the LED light source to white light and to provide the white light to the liquid crystal panel; and a light guide panel disposed between the LED light source and the light conversion layer, wherein the light conversion layer includes a semiconductor nanocrystal and a polymer matrix, and wherein the polymer matrix includes a first polymerized polymer of a first monomer including at least two thiol (—SH) groups, each located at a terminal end of the first monomer, and a second monomer including at least two unsaturated carbon-carbon bonds, each located at a terminal end of the second monomer.
Abstract:
A semiconductor nanocrystal-polymer composite including a semiconductor nanocrystal, a polymer comprising a plurality of carboxylate anion groups (—COO−) bindable to a surface of the semiconductor nanocrystal, and a metal cation bindable to a carboxylate anion group of the plurality of carboxylate anion groups.
Abstract:
A light emitting diode that includes: a light source; a buffer layer disposed on the light source and including a first matrix polymer; a polymer layer disposed on the buffer layer and including an organic/inorganic hybrid polymer; and an emission layer disposed on the polymer layer and including a light emitting particle dispersed in a second matrix polymer, wherein one selected from the light source, the buffer layer, the emission layer, and a combination thereof includes one selected from sulfurous component, a nitrogenous component, and a combination thereof.