Abstract:
Described herein are aspects related to communicating with a first radio access technology (RAT) and a second RAT, wherein a set of multi-input, multi-output (MIMO) resources is allocated for communication between a mobile station (MS) and a base station (BS) of the first RAT. A request message is sent to the BS of the first RAT requesting reallocation of at least a portion of the set of MIMO resources in a scan duration. During the scan duration, signals are received from a BS of the second RAT over a reallocated subset of the set of MIMO resources and communications occur with the BS of the first RAT over a non-reallocated subset of the set of MIMO resources. During a normal duration subsequent to the scan duration, communications occur with the BS of the first RAT using the set of MIMO resources including at least some of the reallocated subset of the set of MIMO resources.
Abstract:
The present disclosure presents a method and an apparatus for network cognizant uplink transmissions during inter radio access technology (IRAT) handovers. For example, the method may include skipping inter radio access technology (IRAT) measurements during one or more dedicated channel (DCH) measurement occasion (DMO) or idle interval gaps of a transmission timing interval (TTI). The method further includes transmitting data on an uplink from a user equipment (UE) to a network entity during the entire duration of the TTI and determining whether the network entity is decoding the data transmitted on the uplink based on a response received from the network entity. As such, network cognizant uplink transmissions during inter radio access technology (IRAT) handovers may be achieved.
Abstract:
Methods and apparatuses are presented for determining a location of a mobile station. In some embodiments, a mobile station may acquire at least one attribute of a reference base station to obtain the identity of the reference base station. A first and a second locally unique attribute of a local base station may then be acquired. The mobile station may then compute a distance metric from the mobile station to the reference base station based on the at least one attribute, and the first and second locally unique attributes. The location of the mobile station may be determined based at least in part on the distance metric. In some embodiments, the distance metric may include a number of how many base stations away (i.e. “hops” or number of handovers) the mobile station is from the reference base station.
Abstract:
A measurement reporting method to avoid strong interference includes measuring all cells on a neighbor frequency indicated by a network on a neighbor list. A first and second set of cells are identified. The identified first set of cells are from the neighbor list and have a first signal strength a first predefined amount above a serving cell signal strength. The second set of cells are not on the neighbor list and have a second signal strength above a first threshold signal value. The first signal strength of the first set of cells and the second signal strength of the second set of cells are compared to determine whether to send a measurement report for the first set of cells.
Abstract:
A user equipment (UE) is configured to maintain an updated frequency list for pseudo-fast return handover. The UE receives a frequency list for pseudo fast return when the UE is in an idle mode in a first radio access technology (RAT). When the UE is in a connected mode in a second RAT, the list is updated based on actual UE inter- and intra-frequency measurements of the first RAT during mobility.
Abstract:
A process includes determining an unallocated communication frame of a first radio access technology (RAT) using a dedicated physical channel (DPCH) with a time division multiplexing scheme. Measurements are then performed to identify for a second RAT during a time allocated to the unallocated communication frame.
Abstract:
Idle power consumption of a user equipment (UE) is affected by an adaptive cell reselection process to prevent ping-pong cell reselection. The adaptive cell reselection includes adapting triggering threshold values for reselection based on signal strengths. The triggering threshold value may be increased for cell reselection while the UE receives a good signal from a serving cell. When the serving cell signal is poor, the cell reselection triggering threshold value is decreased to allow for fast cell reselection.
Abstract:
A system and method reduce the frequency for performing measurements by a UE in a wireless network, such as a TD-SCDMA network. A UE compares at least one serving cell signal strength to a first threshold value. When the serving cell signal strength value is above the first threshold, the UE determines whether it is stationary. The UE determines whether it is stationary by evaluating change in serving cell signal strength and evaluating a timing difference value. The UE reduces the frequency for performing measurement(s) when changes in the serving cell signal strength values are below a second threshold value and the timing difference value is below a third threshold value. The timing difference can be a subframe number to subframe number (SFN-SFN) observed time difference.
Abstract:
A method of wireless communication includes determining whether a serving cell signal strength is below a first threshold. The method also includes determining whether an inter/intra frequency neighbor cell signal strength is below a second threshold. The method further includes determining whether a number of idle traffic time slots for inter-radio access technology IRAT measurements is less than a third threshold. Finally, a frequency of IRAT measurements in time slot zero (TS0), a downlink pilot time slot (DwPTS), an uplink pilot time slot (UpPTS), and a gap (GP) is increased. The increase is based on the determined serving cell signal strength, the determined inter/intra frequency neighbor cell signal strength, and the determined number of idle traffic time slots.
Abstract:
A measurement reporting method includes measuring a first signal from a first neighbor base station until a first timer expires. Also measured is a second signal from a second neighbor base station until a second timer expires. The first signal is compared with the second signal. A measurement report of the first signal is delayed when the second signal is better than the first signal and the first timer expires prior to the second timer.