Abstract:
Methods and apparatus for partitioning resources for enhanced inter-cell interference coordination (eICIC) are provided. Certain aspects involve broadcasting a message indicating time-domain resource partitioning information (RPI), where a user equipment (UE) may be operating in idle mode. With the RPI, the UE may be able to identify protected resources with reduced/eliminated interference from neighboring cells. The RPI in this broadcasted message may be encoded as a bitmap as an alternative or in addition to enumeration of the U/N/X subframes. Other aspects entail transmitting a dedicated or unicast message indicating the time-domain RPI, where a UE may be operating in connected mode. With the RPI, the UE may be able to determine channel state information (CSI), make radio resource management (RRM) measurements, or perform radio link monitoring (RLM), based on one or more signals from a serving base station during the protected time-domain resources.
Abstract:
Systems and methods for facilitating inter-cell interference coordination using resource partitioning are described. A UE may receive or determine information related to received interference and/or future scheduling. The information may be communicated to a serving base station, which may use the information to allocate uplink or downlink resources between cells. The uplink and/or downlink resource may be partitioned in subbands to mitigate interference from adjacent network nodes. The eNBs may communicate, such as directly, via a backhaul connection, and/or between UEs to configure interference coordination and signaling.
Abstract:
The state of an access link and backhaul link of a low power node may be determined and controlled after a low power node is initialized. The overhead signaling on the access link of a relay is controlled based on detecting a user equipment (UE). The connection on the backhaul link of the relay is managed in response to the overhead signaling on the access link.
Abstract:
Aspects of the present disclosure provide techniques for uplink (UL) data channel design. An example method is provided for operations which may be performed by a first apparatus. The example method generally comprises determining a number of pilot symbols to transmit for one or more slots of a first subframe based, at least in part, on a coverage enhancement (CE) level, and transmitting at least one uplink data channel having the determined number of pilot symbols in the one or more slots of the first subframe.
Abstract:
Various aspects of the present disclosure generally relate to neural network based channel state information (CSI) feedback. In some aspects, a device may obtain a CSI instance for a channel, determine a neural network model including a CSI encoder and a CSI decoder, and train the neural network model based at least in part on encoding the CSI instance into encoded CSI, decoding the encoded CSI into decoded CSI, and computing and minimizing a loss function by comparing the CSI instance and the decoded CSI. The device may obtain one or more encoder weights and one or more decoder weights based at least in part on training the neural network model. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A base station of a first network operator (OP) may determine a priority for the first OP for a transmission opportunity of a shared or unlicensed channel. The priority may be lower than a priority of a second OP for the transmission opportunity. Base station may transmit a tentative grant to a user equipment (UE) of the first OP scheduling transmissions over resources of the transmission opportunity. The transmitting device of the first OP may monitor a contention window for reservation signals communicated by devices of the second OP. Based on the monitoring and the tentative grant, the transmitting device of the first OP may perform the transmission over the resources of the shared or unlicensed channel.
Abstract:
Techniques providing opportunistic frequency switching for frame based equipment (FBE), such as may be configured to minimize opportunistic frequency switching delay in FBE new radio (NR) unlicensed (NR-U) networks and/or to provide frequency diversity FBE access based on offset sequences of medium sensing occasions for the carrier frequencies are disclosed. Within the FBE mode network, a base station may configure a pattern of sensing locations in each frame for each frequency transmission unit of the plurality of frequency transmission units, wherein an inter-unit delay of sensing locations between a first frequency transmission unit and a next adjacent frequency transmission unit and between a last frequency transmission unit and the first frequency transmission unit is a fixed duration. Opportunistic frequency switching of embodiments may utilize the medium sensing locations for opportunistically switching between a sequence of the frequency transmission units for implementing frequency diversity FBE access.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for narrowband communications using frequency hopping. In some implementations, a user equipment (UE) may receive a discovery reference signal (DRS) including a skipping signal identifying one or more UEs, may stay on an anchor channel when the skipping signal identifies the UE, and may switch from the anchor channel to a first downlink (DL) hopping channel of a DL frequency hopping pattern when the signal does not identify the UE. In some other implementations, a base station (BS) may be configured to output a DRS including a skipping signal identifying one or more UEs, output a signal indicating a channel occupancy time (COT) obtained on a first DL hopping channel of a DL frequency hopping pattern, and output DL data on the first DL hopping channel of the DL frequency hopping pattern.
Abstract:
Technology neutral coexistence and high priority traffic is disclosed for use in unlicensed frequency bands. Synchronization boundaries are defined in which synchronous contention windows across all radio access technologies attempting access to a shared communication channel occur periodically. Between the synchronous contention windows, the nodes may return to asynchronous access procedures. Such synchronous access procedures may be applicable to certain power classes or deployment type nodes. Additionally, various priority schemes for the synchronous contention window may be used to ensure protection of higher priority nodes or traffic, such as ultra-reliable low latency communication (URLLC) traffic. According to certain aspects, the deployment of such synchronous access methodology may be triggered via signaling from initiating devices. Additional aspects may provide for a technology neutral receiver protection mechanism by defining resources for protection signaling during receiver protection intervals between successive synchronous contention windows.
Abstract:
Techniques providing opportunistic frequency switching for frame based equipment (FBE), such as may be configured to minimize opportunistic frequency switching delay in FBE new radio (NR) unlicensed (NR-U) networks and/or to provide frequency diversity FBE access based on offset sequences of medium sensing occasions for the carrier frequencies are disclosed. Within the FBE mode network, a base station may configure a pattern of sensing locations in each frame for each frequency transmission unit of the plurality of frequency transmission units, wherein an inter-unit delay of sensing locations between a first frequency transmission unit and a next adjacent frequency transmission unit and between a last frequency transmission unit and the first frequency transmission unit is a fixed duration. Opportunistic frequency switching of embodiments may utilize the medium sensing locations for opportunistically switching between a sequence of the frequency transmission units for implementing frequency diversity FBE access.