Abstract:
Disclosed are a method and an apparatus for generating an STF signal usable in a wireless LAN system. The STF signal is included in a field used to improve AGC estimation of a MIMO transmission. A portion of the STF signal is used to transmit an uplink, and can be used for uplink MU PPDUs transmitted from a plurality of STAs. The STF that is suggested, for example, is used for a 40 MHz band or an 80 MHz band and can be generated based on a sequence in which a predetermined M sequence is repeated. The predetermined M sequence can be a binary sequence of which the length is 15 bits.
Abstract:
Provides are a method and apparatus for configuring an LTF sequence in a wireless LAN system. More specifically, a transmission apparatus generates an LTF sequence corresponding to a first frequency band. The transmission apparatus sends an LTF sequence corresponding to the first frequency band to a reception apparatus. In this case, an LTF sequence corresponding to the second 106-RU of a second frequency band is used as a sequence located in the second 106-RU of the second frequency band in the LTF sequence corresponding to the first frequency band. The transmission apparatus may apply a phase shift of 180° to the LTF sequence corresponding to the second 106-RU of the second frequency band.
Abstract:
Disclosed is a pilot sequence transmission method for generating a BSS composed of a plurality of pilot sequences, and selectively generating an SSS, to be used with the BSS, according to a channel environment such that additional information is transmitted through a pilot sequence selected from a sequence set having the BSS and the SSS. Furthermore, also disclosed is a pilot sequence identification method analyzing a pilot sequence transmitted by a transmitter, so as to obtain additional information.
Abstract:
Disclosed is a method for a station (STA) device transmitting data in a Wireless Local Area Network (WLAN) system. The method for transmitting data, according to one embodiment of the present invention, comprises the steps of: FEC encoding transmission data; interleaving the transmission data; constellation mapping the transmission data; performing IDFT on the transmission data; and upconverting the transmission data and transmitting a transmission signal, wherein IDFT is performed using different FFT sizes for a first part of the transmission signal and a second part of the transmission signal, and the second part of the transmission signal is allocated to at least one STA in units of at least one resource unit.
Abstract:
A method and apparatus for transmitting frames having a long training field (LTF) for a second type of station (STA) in a wireless communication system are provided. For this, STA prepares a frame having a first part for a first type of STA and a second part for the second type of STA; wherein the second part includes multiple LTFs, when the frame is used for MU (Multiple User) transmission scheme or OFDMA (Orthogonal Frequency Divisional Multiple Access) scheme. In case a first LTF having a first number of symbols length and a second LTF having a second number of symbols length, which is greater than the first number of symbols length, are used for the multiple LTFs, the first LTF is extended such that the first LTF and the second LTF have a same number of symbols length. The STA transmits the prepared frame to one or more STAs.
Abstract:
Disclosed in the present invention are a method for transreceiving a physical protocol data unit (PPDU) in a wireless communication system and a device for same. More specifically, a method for transmitting a physical protocol data unit (PPDU) using a wireless communication device in a wireless communication system comprises the steps of: generating a PPDU including a legacy preamble, an HE-preamble, and a data field; and transmitting the generated PPDU, wherein a minimum integer number of pilot patterns are defined, wherein the minimum integer number is larger than the value obtained by dividing the total number of subcarriers constituting the data field or a fast Fourier transform (FFT) size value used when generating the PPDU by the total number of pilots, wherein specific pilot patterns from among the pilot patterns are allocated to each symbol of the data field, and wherein the index of a subcarrier to which the pilot is mapped may be determined by the pilot patterns.
Abstract:
Disclosed is a method for a station (STA) device transmitting data in a Wireless Local Area Network (WLAN) system. The method for transmitting data, according to one embodiment of the present invention, comprises the steps of: FEC encoding transmission data; interleaving the transmission data; constellation mapping the transmission data; performing IDFT on the transmission data; and upconverting the transmission data and transmitting a transmission signal, wherein the transmission signal comprises a first part and a second part, and IDFT is performed using different FFT sizes for the first part and the second part.
Abstract:
Disclosed is a method for a station (STA) device transmitting data in a wireless local area network (WLAN) system. The method for transmitting data, according to one embodiment of the present invention, comprises the steps of: FEC encoding transmission data; constellation mapping the transmission data; inserting a pilot tone in the transmission data; performing Inverse Discrete Fourier Transform (IDFT) on the transmission data; and upconverting the transmission data and transmitting a transmission signal, wherein, if an Orthogonal Frequency Division Multiple Access (OFDMA) scheme is applied to the transmission signal, the transmission signal comprises at least one tone unit which is the unit of subcarrier allocation of the OFDMA scheme.
Abstract:
A method for performing a multi-beamforming training and a device using the same are provided. An initiator transmits a first beacon frame for beamforming training on a first channel during a sector sweep and transmits a second beacon frame for beamforming training on a second channel during the sector sweep. The first beacon frame comprises a multi-channel indicator that indicates that beamforming training is performed on the first and second channels.
Abstract:
Proposed is a control field including allocation information regarding a resource unit (RU) in a wireless local area network (WLAN) system supporting a plurality of RUs. A data field may be transmitted in unit of the RU. For a case where two 106-RUs are arranged and a plurality of user stations (STAs) are multiplexed to the respective 106-RUs, a SIG-B field may be used to perform signaling. More specifically, the number of STAs to be multiplexed may be indicated by using first and second identification bits in a user-common field of the SIG-B field.