Abstract:
A subscriber station may determine whether a service flow between the subscriber station and a base station is retained during an idle mode of the subscriber station. The subscriber station may reactivate the service flow when the subscriber station exits the idle mode. The subscriber station may monitor whether the service flow has data activity. The subscriber station may delete the service flow if there is no data activity.
Abstract:
Methods and apparatus for setting the connection identifier (CID) mask length of a Hybrid Automatic Repeat-Request (HARQ)-MAP or a SUB-MAP pointer information element (IE) in a compressed downlink map (DL-MAP) of an orthogonal frequency-division multiple access (OFDMA) frame are provided in an effort to reduce the number of false indications in the CID mask, while also striving, as a secondary concern, to reduce the CID mask length. In this manner, an individual mobile station (MS) may not waste processing, battery power, or time interpreting a HARQ-MAP message or a sub downlink/uplink map (SUB-DL-UL-MAP) message that was not intended for this particular MS. For some embodiments where the CID mask length is set to be small, the control overhead (i.e., the size of the HARQ-MAP or the SUB-MAP pointer IE) may be decreased, and more of the OFDMA frame may be available for data traffic.
Abstract:
An open service provisioning method may be implemented by a terminal. The method may include receiving a customer's selection of a first-time network access provider and network service provider (NAP/NSP). The method may also include establishing a connection with the first-time NAP/NSP. The method may also include receiving information about possible other NAPs/NSPs while connected to the first-time NAP/NSP. The method may also include receiving the customer's selection of a home NAP/NSP. The method may also include assisting the customer to sign up for service with the home NAP/NSP. The method may further include establishing a connection with the home NAP/NSP.
Abstract:
A base station may be configured so that it operates in accordance with certain MAP transmission rules that may enable mobile stations to save battery power in certain situations. Upon receiving a MAP message, a mobile station may determine whether there is a burst allocated for the mobile station in the current frame by determining the value of at least one of the following: an idle users bit in the SUB-MAP pointer information element (IE), and a sleep users bit in the SUB-MAP pointer IE. The mobile station may discontinue processing of the MAP message and power down one or more components of the mobile station if there is not a burst allocated for the mobile station in the current frame.
Abstract:
Methods and apparatus for easily and quickly returning to a first radio access technology (RAT) network when handover to a second RAT network is cancelled are provided. The methods and apparatus may involve a mobile station (MS) entering idle mode before handover to the second RAT network is completed and requesting a serving base station (BS) to retain MS service and operational information, as well as service flow state information. In this manner, should handover to the second RAT network be cancelled before completion, a re-entry to the first RAT network may be expeditiously performed using the retained MS information.
Abstract:
Certain embodiments of the present disclosure provide a method for communicating by a multi-mode mobile station (MS) with first and second networks via first and second radio access technologies (RATs). The method generally includes measuring a time offset between frames of the first RAT and frames of the second RAT while maintaining a connection with the first network via the first RAT, sending a request to a base station of the first network to establish scan periods during which the MS may switch to the second network to monitor for paging messages, and switching to the second network to monitor for paging messages during a scan period without terminating the connection with the first network. The first RAT may comprise, for example, WiMAX, while the second RAT may comprise, for example, CDMA.
Abstract:
A method for subscriber station-based admission control may include determining that there is demand for a new connection at the subscriber station. The method may also include determining whether the new connection should be admitted based on resource availability. The method may also include sending a request for the new connection to a base station if it is determined that the new connection should be admitted.
Abstract:
Certain embodiments of the present disclosure may allow WiMAX signaling overhead to be reduced by sending burst allocation information to MSs using messages that may be transmitted using more efficient modulation coding schemes (MCSs) than that allowed for DL-MAP and UL-MAP messages. For example, burst allocation information may be sent in SUB-DL-UL-MAP or HARQ-MAP messages that may be encoded with selectable MCSs that result in higher data rate than an MCS used for conventional DL-MAP and UL-MAP messages. For certain embodiments, MSs may be partitioned into groups based on CINR and the burst allocation information for each group may be transmitted using an MCS that is appropriate for that group based on the CINR for MSs in that group.
Abstract:
A method for intra-user quality of service (QoS) uplink scheduling may include determining scheduling types associated with active uplink connections that are maintained by the subscriber station. The method may also include determining QoS parameters corresponding to the different scheduling types. The method may also include scheduling the active uplink connections for uplink transmissions based on the different scheduling types and their corresponding QoS parameters.
Abstract:
A radio access network comprises a base station controller and a plurality of radio base stations. The radio base stations connect to the base station controller in a daisy chain configuration via a shared communication link. At least one radio base station in the chain includes a priority queue for scheduling packets to be transmitted via the shared communication link to an adjacent radio base station. The priority queue schedules packets for transmission over the shared communication link based on the location of the terminating radio base station for each packet so that packets traversing more hops are given priority over packets traversing fewer hops.