Abstract:
Techniques are provided for provisioning network resources for virtual machines. At a first switch device, a configuration request message is received from a virtual switch to provision virtual network segmentation resources for a virtual machine managed by the virtual switch. The first switch device provisions the virtual network segmentation resources for the virtual machine. The first switch devices sends to a second switch device a first synchronization message that includes information describing the virtual network segmentation resources. The second switch device is a peer of the first switch device. The first switch device also sends to the second switch device a second synchronization message that includes state information indicating that the first switch device is in an active state for servicing the virtual machine and that the second switch device is to be placed in a dormant state for servicing the virtual machine.
Abstract:
A method is provided in one example embodiment and includes establishing a virtual trunk link between a first network element and a second network element. The first and second network elements are located at a first site and the first site and a second site comprise at least a portion of an overlay network. The method further includes receiving data traffic at the first network element, which data traffic is associated with a segment of the overlay network, and mapping a first network identifier allocated to the overlay network segment at the first network element to a virtual trunk link and a VLAN ID. The method additionally includes forwarding the data traffic from the first network element to the second network element via the virtual trunk link with the VLAN ID.
Abstract:
An example method for determining an optimal forwarding path across a network having VxLAN gateways configured to implement both FGL networking and VxLAN capabilities can include learning RBridge nicknames associated with the VxLAN gateways in the network. Additionally, the method can include determining a path cost over the FGL network between each of the VxLAN gateways and a source node and a path cost over the VxLAN between each of the VxLAN gateways and a destination node. Further, the method can include determining an encapsulation overhead metric associated with the VxLAN and selecting one of the VxLAN gateways as an optimal VxLAN gateway. The selection can be based on the computed path costs over the FGL network and the VxLAN and the encapsulation overhead metric.
Abstract:
Methods and apparatus for load balancing across member ports for traffic egressing out of a port channel are provided herein. An example method according to one implementation may include: assigning a quantized value based on current load to each of the network ports in the port channel; receiving a data packet addressed to egress through the port channel; identifying a traffic flow with which the received data packet is associated; determining whether the identified traffic flow is a new traffic flow; and selecting one of the network ports in the port channel as an egress port. Selection of the egress port may be weighted according to the quantized value of each of the network ports in the port channel.
Abstract:
Techniques are provided for updating routing tables of switch devices. At a first switch device of a first rack unit in a network, information is received about addresses of host devices in the network. The addresses are stored in a software cache. A packet is received from a first host device assigned to a first subnet and housed in the first rack unit. The packet is destined for a second host device assigned to a second subnet and housed in a second rack unit in the network. The packet is forwarded using the subnet entry and it may remain sub-optimal during a period before which an entry can be installed form a software cache. The software cache is evaluated to determine the address of the second host device. The packet is then forwarded optimally. This will ensure any-to-any communications in the network initially sub-optimally and subsequently optimally.
Abstract:
Disclosed are systems, apparatuses, methods, and computer-readable media for providing interoperable heterogenous networks. A method comprises configuring a logical network with a first network and a second network; receiving a request message from a source device by the first border device in the first network, wherein the request message includes a related to a media access control (MAC) address associated with a destination device in the second network; sending a proxy message to the second border device based on the request message, the proxy message having a source address that identifies an external IP address associated with the first border device; receiving a response message including the MAC address of the destination device, wherein the response message is addressed to the external address of the first border device; and sending a border gateway protocol (BGP) update including the MAC address of the destination device.
Abstract:
A method is provided in one example embodiment and includes creating a segment organization, which includes a configuration profile. The method also includes attaching the configuration profile to a server in the segment organization. The method further includes sending the attached configuration profile to a database in a physical network.
Abstract:
The present technology provides a framework for user-guided end-to-end automation of network deployment and management, that enables a user to guide the automation process for any kind of network deployment from the ground up, as well as offering network management, visibility, and compliance verification. The disclosed technology accomplishes this by creating a stateful and interactive virtual representation of a fabric using a customizable underlay fabric template instantiated with user-provided parameter values and network topology data computed from one or more connected network devices. A set of expected configurations corresponding to the user-specified underlay and overly fabric policies is then generated for deployment onto the connected network devices. Network deviations from the intended fabric policies are addressed by the provision of one or more configuration lines to be deployed onto or removed from the connected network devices to bring the network state in agreement with the set of expected configuration.
Abstract:
Techniques for utilizing a Software-Defined-Networking (SDN) controller and/or a Data Center Network Manager (DCNM) and network border gateway switches associated with a multi-site cloud computing network to provide reachability data indicating physical links between the border gateways disposed in different sites of the multi-site network to establish secure connection tunnels utilizing the physical links and unique encryption keys. The SDN controller and/or DCNM may be configured to generate a physical underlay model representing the physical underlay, or network transport capabilities, and/or a logical overlay model representing a logical overlay, or overlay control-plane, of the multi-site network. The SDN controller may also generate an encryption key model representing the associations between the encryption keys and the physical links between the associated network border gateway switches. The SDN controller may utilize the models to determine route paths for transmitting network traffic spanning over different sites of the multi-site network at line speed.
Abstract:
A first network device advertises routes of locally connected routes/subnetworks based on the connectivity of the host with respect to peer network devices. The first network device establishes a virtual port channel associated with a virtual network address. The virtual port channel includes the first network device associated with a first network address and a second network device associated with a second network address. The first network device detects that a host is connected to the first network device and determines a next hop address to associate with the host. The next hop address is determined based on whether the host is also connected to the second network device of the virtual port channel. The first network device generates a route advertisement associating the next hop address with the host.