Abstract:
Generally described, physical computing devices in a virtual network can be configured to host a number of virtual machine instances. The physical computing devices can be operably coupled with offload devices. In accordance with an aspect of the present disclosure, a security component can be incorporated into an offload device. The security component can be a physical device including a microprocessor and storage. The security component can include a set of instructions configured to validate an operational configuration of the offload device or the physical computing device to establish that they are configured in accordance with a secure or trusted configuration. In one example, a first security component on the offload device can validate the operational computing environment on the offload device and a second security component on the physical computing device can validate the operational computing environment on the physical computing device.
Abstract:
Generally described, aspects of the present disclosure relate to a live update process of the virtual machine monitor during the operation of the virtual machine instances. An update to a virtual machine monitor can be a difficult process to execute because of the operation of the virtual machine instances. Generally, in order to update the virtual machine monitor, the physical computing device needs to be rebooted, which interrupts operation of the virtual machine instances. The live update process provides for a method of updating the virtual machine monitor without rebooting the physical computing device.
Abstract:
Approaches to enable the configuration of computing resources for executing virtual machines on behalf of users to be cryptographically attested to or verified. When a user requests a virtual machine to be provisioned, an operator of the virtualized computing environment can initiate a two phase launch of the virtual machine. In the first phase, the operator provisions the virtual machine on a host computing device and obtains cryptographic measurements of the software and/or hardware resources on the host computing device. The operator may then provide those cryptographic measurements to the user that requested the virtual machine. If the user approves the cryptographic measurements, the operator may proceed with the second phase and actually launch the virtual machine on the host. In some cases, operator may compare the cryptographic measurements to a list of approved measurements to determine whether the host computing device is acceptable for hosting the virtual machine.
Abstract:
Generally described, the present application relates to systems and methods for the managing virtual machines instances using a physical computing device and an offload device. The offload device can be a separate computing device that includes computing resources (e.g., processor and memory) separate from the computing resources of the physical computing device. The offload device can be connected to the physical computing device via a bus interface. The bus interface can be a high speed, high throughput, low latency interface such as a Peripheral Component Interconnect Express (PCIe) interface. The offload device can be used to offload virtualization and processing of virtual components from the physical computing device, thereby increasing the computing resources available to the virtual machine instances.
Abstract:
In a system that provides network-based computer infrastructure services, a monitoring agent is installed on a computer to gather and report operational metrics from various sources, which may include infrastructure support services as well as elements of the computer itself. Metrics to be gathered and reported by the monitoring agent, as well as the format in which metrics are to be reported, are specified declaratively so that they can be changed without altering the procedural aspects of the monitoring agent.
Abstract:
A formalized set of interfaces (e.g., application programming interfaces (APIs)) is described, that uses a security scheme, such as asymmetric (or symmetric) cryptography, in order to secure the results of privileged operations on systems such as the operating system (OS) kernel and/or the hypervisor. The interface allows a public key to be included into a request to perform a privileged operation on a hypervisor and/or kernel. The kernel and/or hypervisor use the key included in the request to encrypt the results of the privileged operation. In some embodiments, the request itself can also be encrypted, such that any intermediate parties are not able to read the parameters and other information of the request.