Abstract:
Some aspects described herein relate to reporting, to a node, an indication related to a capability to generate antenna weights for a multi-beam, receiving, from the node in response to the indication, a number of reference signals, and generating, based at least in part on the number of reference signals received from the base stations, multiple antenna weights to use in communicating with the base station.
Abstract:
Systems and methods for wireless communication include a user equipment (UE) and a base station, wherein the UE transmits additional channel state information (A-CSI), along with ACK/NACK (or “A/N”) reporting to the base station in a soft A/N payload. The A/N reporting is responsive to downlink control information (DCI) grants in a downlink transmission from the base station. The A-CSI reporting is responsive one or more DCIs which include a CSI trigger. Even if one or more DCIs with CSI triggers are missed in the downlink transmission, the UE is designed to detect whether there may be any missing DCIs with CSI triggers and provide A-CSI reporting in the soft A/N payload based on this detection.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may receive a semi-persistent scheduling (SPS) grant of initial resources for receiving a transmission, receive, in a group control channel, a resource allocation for additional resources for receiving the transmission, determine resources for receiving the transmission based on the resource allocation and the SPS grant, and receive the transmission on the determined resources. A base station may transmit a SPS grant for scheduling a transmission on a set of resources, receive a feedback report from a user equipment (UE) indicating the UE requires additional resources for receiving the transmission, generate, based at least on the UE requiring the additional resources, a resource allocation for scheduling the additional resources for the UE, transmit the resource allocation in a group control channel, and transmit the transmission on the set of resources and the additional resources.
Abstract:
Wireless communications systems and methods related to improving detectability of interference management signals are provided. A first wireless communication device communicates, with a second wireless communication device, a first reservation signal indicating a reservation for a first transmission slot in a spectrum accessed by a plurality of network operating entities. The first wireless communication device and the second wireless communication device are associated with a first network operating entity of a plurality of network operating entities. The first reservation signal includes a duration based on a power class associated with the first network operating entity. The first wireless communication device communicates, with the second wireless communication device, a first communication signal in the first transmission slot.
Abstract:
Wireless communications systems and methods related to improving detectability of interference management signals are provided. A first wireless communication device communicates, with a second wireless communication device, a first reservation signal indicating a reservation for a first transmission slot in a spectrum accessed by a plurality of network operating entities. The first wireless communication device and the second wireless communication device are associated with a first network operating entity of a plurality of network operating entities. The first reservation signal includes a duration based on a power class associated with the first network operating entity. The first wireless communication device communicates, with the second wireless communication device, a first communication signal in the first transmission slot.
Abstract:
Aspects of the present disclosure relate to methods and apparatus for assigning channels to networks in a group based on network coverage overlap and network weights. An example method generally includes determining whether channels are available for allocation at each network represented by a node in a network overlap graph, wherein each node in the graph is associated with an assigned channel in a shared spectrum, and for each network in the graph for which channels are available for allocation, identifying channels that are available for allocation to the network, and assigning at least one of the available channels to the network based, at least in part, on a weighting associated with the network.
Abstract:
A method for wireless communication may comprise, for example, automatically determining first power settings for a first radio access technology (RAT) based on second power settings for a second RAT, and automatically applying the first power settings as power settings for the first RAT.
Abstract:
Aspects of the present disclosure relate to methods and apparatus for spectrum access server support of resource assignments based on radio access network coexistence information. An example method generally includes obtaining information regarding capability of different entities requesting use of the shared radio resources, estimating compatibility between the different entities based on the information, and allocating the shared radio resources to the different entities based on the estimated compatibility.
Abstract:
According to some wireless network standards the size of a neighbor cell list is restricted to a maximum size. The limited size of a neighbor cell list may not reflect the realities of a wireless network deployment, especially for deployments including numerous femto cells clustered in close proximity. Accordingly, as the concentration of macro cells and/or femto cells in an area increases, there lies a challenge to identify and communicate neighbor lists to user devices that reflect the arrangement of a particular portion of the deployment and the needs of the user devices. Various systems, methods and apparatus described herein are configured to provide a user device or a group of user devices a neighbor cell list that includes neighbor cell identifiers chosen from a candidate list.
Abstract:
Methods and apparatus for communication at a network entity comprise receiving one or more technology layer measurements during a measurement period. The methods and apparatus further comprise determining that a first subset of the one or more technology layer measurements satisfies an adequate user equipment (UE) communication condition. In addition, the methods and apparatus comprise determining that a second subset of the one or more technology layer measurements satisfies at least one measurement threshold value. Moreover, the methods and apparatus comprise identifying a network entity conflict when the first subset of the one or more technology layer measurements satisfies the adequate UE communication condition and the second subset of the one or more technology layer measurements satisfies the at least one measurement threshold value.