Abstract:
Embodiments of a system and method for beamforming in a Wireless Network are generally described herein. In some embodiments, an enhanced Node B (eNB) transmits to User Equipment (UE), from a plurality (Nc) of antenna ports of a plurality (Nt) of transmit antennas, a data signal where signal power is allocated in eigen beams, each of the Nt transmit antennas having antenna ports that are adjustable in elevation and in azimuth. The eNB also determines and transmits to the UE a Pc set of the largest principal eigen beams of the data signal and receives, as feedback from the UE, a precoding matrix that identifies the antenna port from which strongest energy in the data signal is detected at the UE. The eNB uses the precoding matrix for beamforming.
Abstract:
Embodiments allow selection of a Discovery signal (DS) used to identify an eNB to a UE receiving the DS. The DS allows the UE to ascertain the existence and/or cell identifier of the eNB. DS comprise a plurality of other signals such as a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Cell Specific Reference Signal (CRS) and/or a Channel State Information Reference Signal (CSI-RS). A DS occasion comprises a number of subframes where the selected signals that comprise the DS are transmitted. The signals selected for the DS, their characteristics and properties allow a UE to decode the cell identifier. The DS occasion occurs with a designated periodicity.
Abstract:
Methods, apparatus, and computer-readable media are described for notching a 6 GHz channel. A station associates with an access point on a 6 GHz band. A notching pattern indication is decoded from data received from the AP after associating with the AP. A notching region within a channel within the 6 GHz band is determined based on the notching pattern indication. The notching pattern indicates a width of a notching region and a location of the notching region within the channel. The notching region covers bandwidth occupied by an incumbent system within the channel. A physical layer convergence procedure (PLCP) protocol data unit (PPDU) is encoded for transmission on the channel to the AP. The PPDU is encoded to exclude transmission within the notching region.
Abstract:
This disclosure describes systems, methods, and devices related to a trigger-based null data packet (NDP) for channel sounding system. A device may send a trigger frame to a group of station devices, the group of station devices including a first station device, the trigger frame indicating a high efficiency (HE) long training field (HE-LTF) mode and a guard interval duration. The device may identify a HE trigger-based (TB) null data packet (NDP) received from the first station device, the HE TB NDP including a first packet extension field, wherein the HE TB NDP is associated with the HE-LTF mode and the guard interval duration indicated in the trigger frame. The device may send a downlink NDP including a second packet extension field, a second HE-LTF mode, and a second guard interval duration. The device may determine channel state information based on HE TB NDP received from the first station device.
Abstract:
Computing readable media, apparatuses, and methods for signaling for uplink sounding are disclosed. An apparatus is disclosed comprising processing circuitry. The processing circuitry may be configured to: decode a trigger frame comprising a resource unit (RU) allocation, and a spatial stream (SS) allocation for the first wireless device to transmit an uplink (UL) sounding signal, where the trigger frame include an indication that the trigger frame is for the UL sounding signal. The processing circuitry may be further configured to: determine a path loss based on the indication of the transmit power and a received power of the trigger frame at the first wireless device. The processing circuitry may be configured to: determine a transmit power for the UL sounding signal based on the path loss; and transmit the UL sounding signal in accordance with the RU allocation, the SS allocation, and the transmit power.
Abstract:
Methods, apparatuses, and computer readable media for high efficiency (HE) beacon and HE formats in a wireless network are disclosed. An apparatus of a high efficiency (HE) access point (AP), where the apparatus comprises processing circuitry configured select a tuple from the basic HE-MCS set of tuples, if a basic HE modulation and control scheme (MCS)(HE-MCS) and a number of spatial streams (NSS) set of tuples is not empty, and otherwise select the tuple from a mandatory HE-MCS and NSS set of tuples. The processing circuitry may be further configured to encode a beacon frame in a HE single user (SU) physical layer (PHY) protocol data unit (PPDU), in accordance with the selected tuple, and configure the HE AP to transmit the HE SU PPDU. Null data packets formats, methods, computer readable media, and apparatuses are disclosed for multiple 20 MHz operations.
Abstract:
Various embodiments include an apparatus to be employed by an enhanced Node B (eNB), the apparatus comprising communication circuitry to receive, from a user equipment (UE), feedback information and control circuitry, coupled with the communication circuitry, to identify a codeword from a three-dimensional codebook based on the feedback information received from the UE, wherein the communication circuitry is further to precode data to be transmitted to the UE based on the codeword. An apparatus to be employed by a UE and additional methods are described.
Abstract:
Methods, computer readable media, and apparatus for determining a receive (Rx) number of spatial streams (NSS) for different bandwidths (BWs) and modulation and control schemes (MCSs) are disclosed. An apparatus is disclosed comprising processing circuitry configured to decode a supported HE-MCS and a NSS set field, the supported HE-MSC and NSS set field received from an high-efficiency (HE) station. The processing circuitry may be further configured to determine a first maximum value of N receive (Rx) SS for a MCS and a bandwidth (BW), where the first maximum value of N Rx SS is equal to a largest number of Rx SS that supports the MCS for the BW as indicated by the supported HE-MCS and NSS set field; and, determine additional maximum values based on an operating mode (OM) notification frame, and a value of an OM control (OMC) field. Signaling for BW in 6 GHz is disclosed.
Abstract:
Methods, devices and systems for jointly encoding allocation information of one or more wireless communication stations in a common portion of a physical layer header are disclosed. In some examples, a wireless device may: generate allocation information associated with one or more wireless communication stations; encode the allocation information into the common portion of the physical layer header; and transmit the physical layer header to the one or more wireless communication stations.
Abstract:
This disclosure describes methods, apparatus, and systems related to a high efficiency signal field encoding structure. A device may determine a communications channel having a bandwidth of a frequency band. The device may determine a first group of subchannels of the bandwidth and a second group of subchannels of the bandwidth. The device may determine a high efficiency signal field to be transmitted on the communications channel to a first device. The device may encode the high efficiency signal field using the first group of subchannels and the second group of subchannels. The device may cause to send the high efficiency signal field to the first device.