Abstract:
A tank and associated fabrication method are provided which may limit the damage otherwise occasioned by the impact of a ballistic projectile. The tank may include a wall assembly defined between outer and inner walls and a plurality of restraining elements that extend between the walls. The restraining elements may be formed to have a plurality of layers of material that form not only the restraining element, but also portions of the inner and/or outer walls. For example, the tank may include a plurality of cells positioned adjacent to one another with each cell forming portions of two adjacent restraining elements and portions of the inner and/or outer walls. A corresponding method for fabricating a tank including a wall assembly having a plurality of restraining elements is also provided.
Abstract:
A mounting structure wherein a buffer member has a body portion, and a leg portion which is extended from the body portion and engaged with a recess, wherein the body portion has a plurality of first convex portions which are arranged around a center axis of the body portion at regular intervals and abut against a vehicle body, a plurality of first concave portions each of which is formed between the adjacent first convex portions, a plurality of second convex portions which are arranged around the center axis of the body portion 61 at regular intervals and abut the fuel tank, and a plurality of second concave portions each of which is formed between the adjacent second convex portions, and wherein the first convex portion is formed corresponding to the second concave portion, and the second convex portion is formed corresponding to the first concave portion, is provided.
Abstract:
A tank and associated fabrication method are provided which may limit the damage otherwise occasioned by the impact of a ballistic projectile. The tank may include a wall assembly defined between outer and inner walls and a plurality of restraining elements that extend between the walls. The restraining elements may be formed to have a plurality of layers of material that form not only the restraining element, but also portions of the inner and/or outer walls. For example, the tank may include a plurality of cells positioned adjacent to one another with each cell forming portions of two adjacent restraining elements and portions of the inner and/or outer walls. A corresponding method for fabricating a tank including a wall assembly having a plurality of restraining elements is also provided.
Abstract:
A tank and associated fabrication method are provided which may limit the damage otherwise occasioned by the impact of a ballistic projectile. The tank may include a wall assembly defined between outer and inner walls and a plurality of restraining elements that extend between the walls. The restraining elements may be formed to have a plurality of layers of material that form not only the restraining element, but also portions of the inner and/or outer walls. For example, the tank may include a plurality of cells positioned adjacent to one another with each cell forming portions of two adjacent restraining elements and portions of the inner and/or outer walls. A corresponding method for fabricating a tank including a wall assembly having a plurality of restraining elements is also provided.
Abstract:
The present invention is an assembly for transporting, storing, and delivering a fuel such that a compromise to the containment of the fuel is readily recognized.
Abstract:
A fuel tank is disclosed having an inner shell, an outer shell enveloping the inner shell, and a fuel absorbent material filling the space between the inner shell and the outer shell. The fuel absorbent material is preferably a molded granular material. The inner shell is an assembly of injection molded plastic halves joined together along peripheral flanges, each inner shell half being integrally formed with internal walls. The internal walls are formed with undercut openings. The outer shell is an assembly of outer shell halves joined together along peripheral flanges. Also disclosed is an injection molding apparatus adapted to manufacture the inner shell halves with undercut openings in the internal walls.
Abstract:
A number of variations may include a product including a housing including at least one phase change material and a medium constructed and arranged for thermal energy transfer to or from a vehicle fuel.
Abstract:
A tank and associated fabrication method are provided which may limit the damage otherwise occasioned by the impact of a ballistic projectile. The tank may include a wall assembly defined between outer and inner walls and a plurality of restraining elements that extend between the walls. The restraining elements may be formed to have a plurality of layers of material that form not only the restraining element, but also portions of the inner and/or outer walls. For example, the tank may include a plurality of cells positioned adjacent to one another with each cell forming portions of two adjacent restraining elements and portions of the inner and/or outer walls. A corresponding method for fabricating a tank including a wall assembly having a plurality of restraining elements is also provided.
Abstract:
The invention relates to an unstationary container (1) of thermoplastic material for a motor vehicle with at least one outwardly protruding collar (2), provided at least partially on a container wall (3), the collar (2) forming an acute angle with a plane (6) of the container (1) that extends horizontally in the installed position.
Abstract:
A number of variations may include a product including a housing including at least one phase change material and a medium constructed and arranged for thermal energy transfer to or from a vehicle fuel.