Abstract:
An electronic device is disclosed, including a housing including a first surface forming a front surface of the electronic device, a second surface facing away from the first surface, and a side surface surrounding an interior space defined between the first surface and the second surface, a key structure forming part of the side surface and extending into the interior space, the key structure including an electrode member partially exposed to an exterior environment, wherein the electrode member partially extends into the interior space, a display disposed in the housing so as to be visible through the first surface from the exterior environment, an internal structure disposed between the display and the second surface, wherein the internal structure includes a printed circuit board, and a conductive structure protruding from the internal structure, wherein the conductive structure is electrically connected with the electrode member of the key structure.
Abstract:
A wearable electronic device is disclosed, including: a housing having a front plate disposed facing in a first direction, a rear plate disposed facing in a second direction opposite to the first direction, at least a part of the rear plate substantially transparent, and a side member defining a space between the front plate and the rear plate, a substrate disposed within the space, a biometric sensor module disposed between the substrate and the rear plate including at least one light source configured to emit light to an exterior of the wearable electronic device and at least one light detector configured to receive reflected light corresponding to the emitted light reflected from the exterior, and at least one magnetic substance disposed between the light source and the light detector to limit an amount of light reaching the biometric sensor module other than the reflected emitted light.
Abstract:
A system for detecting the connection of an earphone system to a mobile device is provided. The earphone connection detecting system detects an electrical change from a mechanical change according to the insertion of the earphone jack plug of the earphone system to the jack interface of the mobile device, via a switching device electrically isolated from the earphone system, thereby identifying the connection of the earphone system to the mobile device.
Abstract:
A wearable electronic device, for example a smart watch, has an optical sensor module disposed near a side of the device meant to face the wearer. The device also includes a wireless charging module. The optical sensor and wireless charging modules are at least partially integrated together via a flexible printed circuit board (“FPCB”) which is connected to both modules. The wireless charging module surrounds the FPCB of the optical sensor module, thus allowing a reduction in thickness of the wearable device and further allowing simplification in a process of assembly of the device.
Abstract:
According to various embodiments, there may be provided an electronic device comprising: a housing comprising a first space connected to the outside of the electronic device; a speaker device arranged inside the housing; a speaker housing comprising a second space formed to be spatially separated from the inner space of the electronic device by the speaker device inside the housing, the second space being arranged to be connected to the first space; a first atmospheric pressure sensor which is exposed to the first space and has a waterproofing function; a second atmospheric pressure sensor arranged in the inner space; and a processor, wherein the electronic device is configured to detect immersion of the electronic device in water or removal thereof from the immersion on the basis of the amount of atmospheric pressure change confirmed through the first atmospheric pressure sensor, and is configured to control the water-repellent operation through the speaker device on the basis of a difference value between first atmospheric pressure information acquired from the first atmospheric pressure sensor and second atmospheric pressure information acquired through the second atmospheric pressure sensor. Various other embodiments may be possible.
Abstract:
An apparatus for reducing TDMA noise in a terminal transceiving a wireless signal in a TDMA scheme, includes an interface unit in which an output accessory is mounted, an audio processor including a virtual ground and transceiving an audio signal to and from an output accessory through the interface unit, a switch unit provided between the interface unit and the audio processor and switching such that a ground terminal of the interface unit is connected to one of a real ground or a virtual ground of the audio processor, and a controller controlling the switch unit to connect the ground terminal of the interface unit to the virtual ground when a call function using the output accessory is activated, in which the switch unit is configured by two or more switches which are connected to each other in a parallel connection.
Abstract:
An apparatus for reducing TDMA noise in a terminal transceiving a wireless signal in a TDMA scheme, includes an interface unit in which an output accessory is mounted, an audio processor including a virtual ground and transceiving an audio signal to and from an output accessory through the interface unit, a switch unit provided between the interface unit and the audio processor and switching such that a ground terminal of the interface unit is connected to one of a real ground or a virtual ground of the audio processor, and a controller controlling the switch unit to connect the ground terminal of the interface unit to the virtual ground when a call function using the output accessory is activated, in which the switch unit is configured by two or more switches which are connected to each other in a parallel connection.