Abstract:
An unmanned aerial vehicle is disclosed. The unmanned aerial vehicle includes a memory, a sensor unit, a camera, a moving unit, and a processor. The sensor unit is configured to sense the unmanned aerial vehicle or a surrounding object. The camera configured to take an image. The moving unit configured to generate power to move the unmanned aerial vehicle. The processor is configured to determine whether a user makes contact with the unmanned aerial vehicle. The processor is also configured to control the moving unit to allow the unmanned aerial vehicle to hover at a second location when the unmanned aerial vehicle is moved from a first location to the second location by an external force of a predetermined magnitude or greater while the contact is maintained.
Abstract:
An electronic device includes an audio input module, a memory storing a speech recognition application, a first application, and a second application, a communication circuit communicating with a first NLU server associated with the first application and a second NLU server associated with the second application, and a processor electrically connected to the audio input module, the memory, and the communication circuit and executing the speech recognition application. The processor is configured to convert an utterance of a user received through the audio input module, into an audio signal, to transmit text data corresponding to the audio signal to the first NLU server and the second NLU server, to receive a first control message as a result of analyzing the text data, from the first NLU server, to receive a second control message as a result of analyzing the text data, from the second NLU server, to select one of the first control message or the second control message depending on a specified condition, to provide the first control message to the first application, when the first control message is selected, and to provide the second control message to the second application, when the second control message is selected.
Abstract:
A movable electronic device includes at least one camera module, a driving module configured to support movement on a specified path of the electronic device, and a processor electrically connected to the camera module and the driving module. The processor is configured to control the electronic device to perform capture while moving on a specified first path and to set the first path to a second path based on state information about at least one Internet of Things (IoT) device obtained based on a capture image on the first path.
Abstract:
An electronic device and a method for managing an application is provided. The electronic device includes a communication module configured to communicate with an external device, a processor includes a normal module and a secure module, and a memory connected to the processor. The normal module of the processor is configured to receive an application package from the external device, and if a secure application is included in at least a portion of the application package, the processor is configured to control for installing the secure application in the memory associated with the secure module.