Abstract:
Provided is a display device, including a display panel. An input sensing panel is disposed on the display panel. The input sensing panel includes a plurality of first sensor units arranged along a first direction. A first connection unit is configured to connect the first sensor units. A plurality of second sensor units are arranged along a second direction crossing the first direction. A second connection unit is configured to connect the second sensor units. A first insulation layer is disposed between the first connection unit and the second connection unit. A second insulation layer covers the first insulation layer. A plurality of holes is provided on an upper surface of the second insulation layer, and a thickness of the second insulation layer is greater than a depth of each of the plurality of holes.
Abstract:
A display panel includes a shielding layer overlapped with a semiconductor layer of a transistor connected between a data line and a driving transistor.
Abstract:
An organic light-emitting display apparatus includes: a pixel coupled to a scan line, a data line, a control line, and a power line, the pixel comprising an organic light-emitting diode configured to emit light in response to a data voltage; and a power supply unit configured to apply power source voltages of different levels during one frame period, wherein the pixel is configured to increase an anode voltage of the organic light-emitting diode in a scan period when the data voltage is inputted.
Abstract:
A pixel includes an organic light emitting diode including an anode electrode and a cathode electrode; a driving transistor including an input electrode connected to a first node (FN), a control electrode connected to a second node, and an output electrode connected to a third node; a switching transistor to apply a data signal to the FN in response to a scan signal in a second period; a first initialization transistor to apply a first initialization voltage to the second node in response to an initialization control signal in a first period (FP); a second initialization transistor to apply a second initialization voltage having a voltage level different from the first initialization voltage to the anode electrode in response to the initialization control signal in the FP; and an on-bias transistor to apply a first driving voltage to the FN in response to an on-bias control signal in the FP.
Abstract:
An organic light-emitting display apparatus includes: a pixel coupled to a scan line, a data line, a control line, and a power line, the pixel comprising an organic light-emitting diode configured to emit light in response to a data voltage; and a power supply unit configured to apply power source voltages of different levels during one frame period, wherein the pixel is configured to increase an anode voltage of the organic light-emitting diode in a scan period when the data voltage is inputted.
Abstract:
A pixel includes an organic light emitting diode including an anode electrode and a cathode electrode; a driving transistor including an input electrode connected to a first node (FN), a control electrode connected to a second node, and an output electrode connected to a third node; a switching transistor to apply a data signal to the FN in response to a scan signal in a second period; a first initialization transistor to apply a first initialization voltage to the second node in response to an initialization control signal in a first period (FP); a second initialization transistor to apply a second initialization voltage having a voltage level different from the first initialization voltage to the anode electrode in response to the initialization control signal in the FP; and an on-bias transistor to apply a first driving voltage to the FN in response to an on-bias control signal in the FP.
Abstract:
A pixel includes an organic light emitting diode including an anode electrode and a cathode electrode; a driving transistor including an input electrode connected to a first node (FN), a control electrode connected to a second node, and an output electrode connected to a third node; a switching transistor to apply a data signal to the FN in response to a scan signal in a second period; a first initialization transistor to apply a first initialization voltage to the second node in response to an initialization control signal in a first period (FP); a second initialization transistor to apply a second initialization voltage having a voltage level different from the first initialization voltage to the anode electrode in response to the initialization control signal in the FP; and an on-bias transistor to apply a first driving voltage to the FN in response to an on-bias control signal in the FP.
Abstract:
A pixel circuit and a display apparatus. The pixel circuit includes a first transistor configured to output a driving current corresponding to a data voltage to an output node, an OLED connected to the output node and configured to emit light according to the driving current output from the first transistor, a storage capacitor coupled to the first transistor and configured to store the data voltage, a second transistor configured to receive a reference voltage from the first transistor during a first time section, configured to diode-connect the first transistor, and configured to compensate for a threshold voltage of the first transistor, and a third transistor configured to diode-connect the first transistor during a second time section, configured to receive the data voltage through the first transistor for which the threshold voltage of the first transistor is compensated, and configured to transfer the data voltage to the storage capacitor.
Abstract:
A display device includes a plurality of pixels, a dummy pixel, and a repair line, wherein the plurality of pixels may include a first subpixel including a first pixel circuit connected with a first initialization voltage line through which a first initialization voltage is provided, and a first light emitting element, and a second subpixel including a second pixel circuit connected with a second initialization voltage line through which a second initialization voltage different from the first initialization voltage is provided, and a second light emitting element, wherein the dummy pixel may include a first transistor connectable with the repair line and connected with the first initialization voltage line, a second transistor connectable with the repair line and connected with the second initialization voltage line, and a dummy pixel circuit connectable with the repair line.
Abstract:
A display device includes: a light emitting element; a first driving transistor between a first node and the light emitting element; a second driving transistor between the first node and the light emitting element; a switching transistor between a data line and the first node; a first compensation transistor between a first control electrode of the first driving transistor and a second node, and configured to receive a first compensation scan signal; a second compensation transistor between a second control electrode of the second driving transistor and the second node, and configured to receive a second compensation scan signal; a first initialization transistor between the first control electrode of the first driving transistor and a first initialization voltage line; and a second initialization transistor between the second control electrode of the second driving transistor and a second initialization voltage line.