Abstract:
An organic light emitting display device is capable of securing sufficient compensation period such that a threshold voltage of a driving transistor may be compensated. A pixel includes: an organic light emitting diode; a second transistor for controlling an amount of current supplied from a first power source to the organic light emitting diode; a first capacitor having a first terminal coupled to a gate electrode of the second transistor; a first transistor coupled between a second terminal of the first capacitor and a data line, and being configured to turn on when a scan signal is supplied to a scan line; and a third transistor coupled between a gate electrode and a second electrode of the second transistor and having a turning-on period that is not overlapped with that of the first transistor. The third transistor is configured to turn on for a longer time than the first transistor.
Abstract:
An organic light emitting diode (OLED) display with improved long range uniformity, driving method and manufacturing method are disclosed. The OLED display manufacturing method includes forming a first active pattern on a substrate, a gate insulating layer, a gate electrode overlapping at least a part of the first active pattern on the gate insulating layer and an interlayer insulating layer. The OLED display manufacturing method further includes forming a conductive layer pattern and an anode of an OLED, forming a pixel defining layer and forming the OLED by forming an organic emission layer and a cathode. The conductive layer pattern is formed to cover the gate electrode and contact a first power line on the interlayer insulating layer.
Abstract:
An organic light emitting display device is capable of securing sufficient compensation period such that a threshold voltage of a driving transistor may be compensated. A pixel includes: an organic light emitting diode; a second transistor for controlling an amount of current supplied from a first power source to the organic light emitting diode; a first capacitor having a first terminal coupled to a gate electrode of the second transistor; a first transistor coupled between a second terminal of the first capacitor and a data line, and being configured to turn on when a scan signal is supplied to a scan line; and a third transistor coupled between a gate electrode and a second electrode of the second transistor and having a turning-on period that is not overlapped with that of the first transistor. The third transistor is configured to turn on for a longer time than the first transistor.
Abstract:
An organic light emitting diode (OLED) display with improved long range uniformity, driving method and manufacturing method are disclosed. The OLED display manufacturing method includes forming a first active pattern on a substrate, a gate insulating layer, a gate electrode overlapping at least a part of the first active pattern on the gate insulating layer and an interlayer insulating layer. The OLED display manufacturing method further includes forming a conductive layer pattern and an anode of an OLED, forming a pixel defining layer and forming the OLED by forming an organic emission layer and a cathode. The conductive layer pattern is formed to cover the gate electrode and contact a first power line on the interlayer insulating layer.