Abstract:
A coincident phased dual-polarized antenna array configured to emit electromagnetic radiation includes: a plurality of electromagnetic radiators arranged in a grid, the plurality of electromagnetic radiators defining a plurality of notches; a ground plane spaced from the electromagnetic radiators; a conductive layer disposed between the electromagnetic radiators and the ground plane, the conductive layer having a plurality of slots laterally offset from the notches and being spaced apart from and electrically insulated from the electromagnetic radiators; and a plurality of feeds, each of the feeds spanning a corresponding slot of the slots and electrically connected to a portion of the conductive layer at one side of the corresponding slot.
Abstract:
An antenna array includes a plurality of radiating elements disposed on a layer that is situated above an egg crate structure that is formed of interconnected dielectric panels. In some embodiments, balun circuitry is disposed on at least some of the dielectric panels of the egg crate structure for use in feeding corresponding radiating elements of the array in a balanced manner. Ground plane blocks may also be coupled to some or all of the dielectric panels to provide circuit shielding and/or to form a ground plane for the array antenna.
Abstract:
An antenna array includes a plurality of radiating elements disposed on a layer that is situated above an egg crate structure that is formed of interconnected dielectric panels. In some embodiments, balun circuitry is disposed on at least some of the dielectric panels of the egg crate structure for use in feeding corresponding radiating elements of the array in a balanced manner. Ground plane blocks may also be coupled to some or all of the dielectric panels to provide circuit shielding and/or to form a ground plane for the array antenna.
Abstract:
A coincident phased dual-polarized antenna array configured to emit electromagnetic radiation includes: a plurality of electromagnetic radiators arranged in a grid, the plurality of electromagnetic radiators defining a plurality of notches; a ground plane spaced from the electromagnetic radiators; a conductive layer disposed between the electromagnetic radiators and the ground plane, the conductive layer having a plurality of slots laterally offset from the notches and being spaced apart from and electrically insulated from the electromagnetic radiators; and a plurality of feeds, each of the feeds spanning a corresponding slot of the slots and electrically connected to a portion of the conductive layer at one side of the corresponding slot.
Abstract:
A system and method for processing antenna signals are provided. For example, the method includes, in a receive mode, weighting and combining signals from at least one low-band antenna radiator element operable over a first bandwidth, at least one high-band antenna radiator element operable over a second bandwidth at least partially overlapping the first bandwidth, and, in some examples, at least one antenna radiator element operable over one or more intermediate bandwidths. The method also includes, in a transmit mode, separating and weighting a full-band input port signal into at least one low-band sub-system output port signal, at least one high-band sub-system port output signal, and, in some examples, at least one intermediate sub-system output port signal operable over one or more overlapping intermediate bandwidths. The weighted combination and weighted separation cover an uninterrupted continuous full-band frequency whose extent covers the full frequency range of all subbands.