Abstract:
Waveforms for wireless communication are shaped asymmetrically according to a complex-valued weighted overlap/add (WOLA) filter. A wireless communication device generates a waveform corresponding to a carrier. The device determines whether neighboring carriers are being used for wireless communication. If one neighboring carrier is occupied and the other is unoccupied, the wireless communication device applies the asymmetrical filter to the waveform such that out-of-band signals which may interfere with the occupied carrier are suppressed to a greater extent than out-of-band signals potentially present in or around the unoccupied carrier. The wireless communication device then transmits the asymmetrically shaped waveform to maximize interference reduction and signal quality.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, one or more downlink grants scheduling one or more corresponding downlink transmissions from the base station to the UE. In some examples, the UE may enter a state of sleep prior to receiving the one or more downlink transmissions. In such examples, the UE may wake up from the state of sleep at a first time that is at least a threshold period of time before a second time corresponding to a beginning of the one or more downlink transmissions. After waking up from the state of sleep, the UE may activate a notch filter and use the activated notch filter to filter a spur generated at the UE. The UE may receive the one or more downlink transmissions with improved reliability based on activating the notch filter.
Abstract:
A receiver receives packets without prior knowledge of their bandwidths. The receiver calculates a first auto-correlation function for a first channel, a second auto-correlation function for a second channel, and a dot product of the first auto-correlation function and the second auto-correlation function. A packet is detected and its bandwidth classified based at least in part on the dot product.
Abstract:
To reduce the peak-to-average power ratio (PAPR) of a complex-valued digital baseband signal, the signal is mixed to an intermediate frequency and its real components extracted, to generate an intermediate-frequency real-valued digital signal. The intermediate frequency is one-quarter of a sampling rate of the complex-valued digital baseband signal. The intermediate-frequency real-valued digital signal is clipped and down-converted by one-quarter of the sampling rate.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, one or more downlink grants scheduling one or more corresponding downlink transmissions from the base station to the UE. In some examples, the UE may enter a state of sleep prior to receiving the one or more downlink transmissions. In such examples, the UE may wake up from the state of sleep at a first time that is at least a threshold period of time before a second time corresponding to a beginning of the one or more downlink transmissions. After waking up from the state of sleep, the UE may activate a notch filter and use the activated notch filter to filter a spur generated at the UE. The UE may receive the one or more downlink transmissions with improved reliability based on activating the notch filter.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may detect whether a reference signal is present in a channel at a time instance at which the reference signal is expected. The UE may selectively gate processing of the reference signal based on detecting whether the reference signal is present in the channel. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify conditions associated with one or more physical channels, for example, a set of resources with which the UE may be configured to communicate with a base station. The UE may determine whether to enable a reduced power mode based on the conditions satisfying certain criteria, for example, the set of resources corresponding allocated for particular transmissions. The UE may identify that the conditions satisfy corresponding criteria, and the UE may determine to enable the reduced power mode. The UE may accordingly modify operations one or more components of a receive chain of the UE. The UE may determine to disable the reduced power mode based on the conditions failing to satisfy the criteria, and the UE may modify operations of the one or more components of the receive chain accordingly.
Abstract:
A receiver receives packets without prior knowledge of their bandwidths. The receiver calculates a first auto-correlation function for a first channel, a second auto-correlation function for a second channel, and a dot product of the first auto-correlation function and the second auto-correlation function. A packet is detected and its bandwidth classified based at least in part on the dot product.