Abstract:
Methods and apparatus for capturing an image using an automatic focus are disclosed herein. In one aspect, a method is disclosed which includes communicating, using a camera, with a wireless device via a wireless communication network. The method further includes determining a distance between the camera and the wireless device using the wireless communication network and adjusting a focus of the camera based upon the determined distance. Finally, the method includes capturing an image using the adjusted focus of the camera. In some aspects, this method may be done on a smartphone or digital camera which includes Wi-Fi capabilities.
Abstract:
Apparatus and methods for facial detection are disclosed. A plurality of images of an observed face is received for identification. Based at least on two or more selected images of the plurality of images, a template of the observed face is generated. In some embodiments, the template is a subspace generated based on feature vectors of the plurality of received images. A database of identities and corresponding facial data of known persons is searched based at least on the template of the observed face and the facial data of the known persons. One or more identities of the known persons are selected based at least on the search.
Abstract:
A method for three-dimensional face generation is described. An inverse depth map is calculated based on a depth map and an inverted first matrix. The inverted first matrix is generated from two images in which pixels are aligned vertically and differ horizontally. The inverse depth map is normalized to correct for distortions in the depth map caused by image rectification. A three-dimensional face model is generated based on the inverse depth map and one of the two images.
Abstract:
An apparatus includes an object detector configured to receive image data of a scene viewed from the apparatus and including an object. The image data is associated with multiple scale space representations of the scene. The object detector is configured to detect the object responsive to location data and a first scale space representation of the multiple scale space representations.
Abstract:
A method operable on a mobile device is described. The method includes receiving a three-dimensional (3D) surround video feed from a vehicle. The 3D surround video feed includes a 3D surround view of the vehicle. The method also includes receiving a user input on a touchscreen indicating vehicle movement based on the 3D surround view. The method further includes converting the user input to a two-dimensional (2D) instruction for moving the vehicle. The 2D instruction includes a motion vector mapped to a ground plane of the vehicle.
Abstract:
A method performed by an electronic device is described. The method includes obtaining a first frame of a scene. The method also includes performing object recognition of at least one object within a first bounding region of the first frame. The method further includes performing object tracking of the at least one object within the first bounding region of the first frame. The method additionally includes determining a second bounding region of a second frame based on the object tracking. The second frame is subsequent to the first frame. The method also includes determining whether the second bounding region is valid based on a predetermined object model.
Abstract:
A method for memory utilization by an electronic device is described. The method includes transferring a first portion of a first decision tree and a second portion of a second decision tree from a first memory to a cache memory. The first portion and second portion of each decision tree are stored contiguously in the first memory. The first decision tree and second decision tree are each associated with a different feature of an object detection algorithm. The method also includes reducing cache misses by traversing the first portion of the first decision tree and the second portion of the second decision tree in the cache memory based on an order of execution of the object detection algorithm.
Abstract:
A method for three-dimensional face generation is described. An inverse depth map is calculated based on a depth map and an inverted first matrix. The inverted first matrix is generated from two images in which pixels are aligned vertically and differ horizontally. The inverse depth map is normalized to correct for distortions in the depth map caused by image rectification. A three-dimensional face model is generated based on the inverse depth map and one of the two images.
Abstract:
A method performed by an electronic device is described. The method includes obtaining a combined image. The combined image includes a combination of images captured from one or more image sensors. The method also includes obtaining depth information. The depth information is based on a distance measurement between a depth sensor and at least one object in the combined image. The method further includes adjusting a combined image visualization based on the depth information.
Abstract:
A method of processing data includes receiving, at a computing device, data representative of an image captured by an image sensor. The method also includes determining a first scene clarity score. The method further includes determining whether the first scene clarity score satisfies a threshold, and if the first scene clarity score satisfies the threshold, determining a second scene clarity score based on second data extracted from the data.