Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a wireless device, beamforming information from a plurality of stations. The beamforming information includes feedback signal-to-noise ratio (SNR) values and beamforming feedback matrices. The method further includes determining a metric associated with a candidate group of the plurality of stations based at least in part on the received feedback SNR values and the received beamforming feedback matrices. The metric indicates a correlation between spatial streams of multi-user multiple-input-multiple-output (MU-MIMO) transmissions intended for the stations of the candidate group.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a wireless device, beamforming information from a plurality of stations. The beamforming information includes feedback signal-to-noise ratio (SNR) values and beamforming feedback matrices. The method further includes determining a metric associated with a candidate group of the plurality of stations based at least in part on the received feedback SNR values and the received beamforming feedback matrices. The metric indicates a correlation between spatial streams of multi-user multiple-input-multiple-output (MU-MIMO) transmissions intended for the stations of the candidate group.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a first wireless device, compressed beamforming information from each of a plurality of stations, the compressed beamforming information including a feedback signal-to-noise ratio (SNR) value and compressed feedback matrix. The method also includes determining a multi-user signal-to-interference-plus noise ratio (SINR) metric for each of the plurality of stations based at least in part on the received feedback SNR values and the received compressed feedback matrices.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes selecting, by a wireless device, a first subset from a first set of candidate multi-user groups of stations. The first subset is based at least in part on first-level grouping metrics associated with the first set of candidate multi-user groups. The method further includes determining second-level grouping metrics associated with a second set of candidate multi-user groups. The second set corresponds to candidate multi-user groups having a greater number of stations or channel vectors than the first set, and the second set is based at least in part on the first subset.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes receiving, by a first wireless device, compressed beamforming information from each of a plurality of stations, the compressed beamforming information including a feedback signal-to-noise ratio (SNR) value and compressed feedback matrix. The method also includes determining a multi-user signal-to-interference-plus noise ratio (SINR) metric for each of the plurality of stations based at least in part on the received feedback SNR values and the received compressed feedback matrices.
Abstract:
Methods, systems, and devices are described for wireless communication. In one aspect, a method of wireless communication includes selecting, by a wireless device, a first subset from a first set of candidate multi-user groups of stations. The first subset is based at least in part on first-level grouping metrics associated with the first set of candidate multi-user groups. The method further includes determining second-level grouping metrics associated with a second set of candidate multi-user groups. The second set corresponds to candidate multi-user groups having a greater number of stations or channel vectors than the first set, and the second set is based at least in part on the first subset.