Abstract:
Embodiments include systems and methods for keypoint detection in an image. In embodiments, a processor of a computing device may apply to an image a first neural network that has been trained to define and output a plurality of regions. The processor may apply to each of the plurality of regions a respective second neural network to that has been trained to output a plurality of keypoints in each of the plurality of regions. The processor may apply to the plurality of keypoints a third neural network that has been trained to determine a correction for each of the plurality of keypoints to provide corrected keypoints suitable for the execution of an image processing function.
Abstract:
An electronic device is described. The electronic device includes a memory configured to store a composite search space comprising a plurality of adjacent cells. Each of the adjacent cells includes a representation of an object. The electronic device also includes a dedicated engine configured to match a representation of an object from a captured image with the representations of the objects in the composite search space.
Abstract:
Method and apparatus for reducing random noise in digital video streams are described. In one innovative aspect, a device for reducing noise of a video stream is provided. The device includes a ringing noise detector configured to identify ringing noise in an image included in the video stream. The device further includes a block detector configured to identify a block pattern in the image included in the video stream, the block detector configured to identify block patterns of a predetermined size and block patterns of an arbitrary size. The device also includes a noise reducer configured to filter the image based on the identified ringing noise and the block pattern.
Abstract:
Certain embodiments relate to systems and methods for presenting an autostereoscopic, 3-dimensional image to a user. The system may comprise a view rendering module to generate multi-view autostereoscopic images from a limited number of reference views, enabling users to view the content from different angles without the need of glasses. Some embodiments may employ two or more reference views to generate virtual reference views and provide high quality stereoscopic images. Certain embodiments may use a combination of disparity-based depth map processing, view interpolation and smart blending of virtual views, artifact reduction, depth cluster guided hole filling, and post-processing of synthesized views.
Abstract:
A method performed by an electronic device is described. The method includes generating a depth map of a scene external to a vehicle. The method also includes performing first processing in a first direction of a depth map to determine a first non-obstacle estimation of the scene. The method also includes performing second processing in a second direction of the depth map to determine a second non-obstacle estimation of the scene. The method further includes combining the first non-obstacle estimation and the second non-obstacle estimation to determine a non-obstacle map of the scene. The combining includes combining comprises selectively using a first reliability map of the first processing and/or a second reliability map of the second processing The method additionally includes navigating the vehicle using the non-obstacle map.
Abstract:
A method performed by an electronic device is described. The method includes generating a depth map of a scene external to a vehicle. The method also includes performing first processing in a first direction of a depth map to determine a first non-obstacle estimation of the scene. The method also includes performing second processing in a second direction of the depth map to determine a second non-obstacle estimation of the scene. The method further includes combining the first non-obstacle estimation and the second non-obstacle estimation to determine a non-obstacle map of the scene. The combining includes combining comprises selectively using a first reliability map of the first processing and/or a second reliability map of the second processing The method additionally includes navigating the vehicle using the non-obstacle map.
Abstract:
A classifier for detecting objects in images can be configured to receive features of an image from a feature extractor. The classifier can determine a feature window based on the received features, and allows access by each decision tree of the classifier to only a predetermined area of the feature window. Each decision tree of the classifier can compare a corresponding predetermined area of the feature window with one or more thresholds. The classifier can determine an object in the image based on the comparisons. In some examples, the classifier can determine objects in a feature window based on received features, where the received features are based on color information for an image.
Abstract:
A method performed by an electronic device is described. The method includes generating a depth map of a scene external to a vehicle. The method also includes performing first processing in a first direction of a depth map to determine a first non-obstacle estimation of the scene. The method also includes performing second processing in a second direction of the depth map to determine a second non-obstacle estimation of the scene. The method further includes combining the first non-obstacle estimation and the second non-obstacle estimation to determine a non-obstacle map of the scene. The combining includes combining comprises selectively using a first reliability map of the first processing and/or a second reliability map of the second processing The method additionally includes navigating the vehicle using the non-obstacle map.
Abstract:
A method performed by an electronic device is described. The method includes generating a depth map of a scene external to a vehicle. The method also includes performing first processing in a first direction of a depth map to determine a first non-obstacle estimation of the scene. The method also includes performing second processing in a second direction of the depth map to determine a second non-obstacle estimation of the scene. The method further includes combining the first non-obstacle estimation and the second non-obstacle estimation to determine a non-obstacle map of the scene. The combining includes combining comprises selectively using a first reliability map of the first processing and/or a second reliability map of the second processing The method additionally includes navigating the vehicle using the non-obstacle map.
Abstract:
A method performed by an electronic device is described. The method includes performing vertical processing of a depth map to determine a vertical non-obstacle estimation. The method also includes performing horizontal processing of the depth map to determine a horizontal non-obstacle estimation. The method further includes combining the vertical non-obstacle estimation and the horizontal non-obstacle estimation. The method additionally includes generating a non-obstacle map based on the combination of the vertical and horizontal non-obstacle estimations.