Abstract:
In general, techniques are described for specifying spherical harmonic coefficients in a bitstream. A device comprising one or more processors may perform the techniques. The processors may be configured to identify, from the bitstream, a plurality of hierarchical elements describing a sound field that are included in the bitstream. The processors may further be configured to parse the bitstream to determine the identified plurality of hierarchical elements.
Abstract:
In general, techniques are described for obtaining audio rendering information in a bitstream. A device configured to render higher order ambisonic coefficients comprising a processor and a memory may perform the techniques. The processor may be configured to obtain sparseness information indicative of a sparseness of a matrix used to render the higher order ambisonic coefficients to a plurality of speaker feeds. The memory may be configured to store the sparseness information.
Abstract:
In general, techniques are described for obtaining an indication of whether spherical harmonic coefficients are representative of a synthetic audio object. In accordance with the techniques, a device comprising one or more processors may be configured to obtain an indication of whether spherical harmonic coefficients representative of a sound field are generated from a synthetic audio object.
Abstract:
In general, techniques are described for coding of spherical harmonic coefficients representative of a three dimensional soundfield. A device comprising a memory and one or more processors may be configured to perform the techniques. The memory may be configured to store a plurality of spherical harmonic coefficients. The one or more processors may be configured to perform an energy analysis with respect to the plurality of spherical harmonic coefficients to determine a reduced version of the plurality of spherical harmonic coefficients.
Abstract:
In general, techniques are described for obtaining audio rendering information in a bitstream. A device configured to render higher order ambisonic coefficients comprising a processor and a memory may perform the techniques. The processor may be configured to obtain sign symmetry information indicative of sign symmetry of a matrix used to render the higher order ambisonic coefficients to generate a plurality of speaker feeds. The memory may be configured to store the sparseness information.
Abstract:
In general, techniques are described for coding of spherical harmonic coefficients representative of a three dimensional soundfield. A device comprising a memory and one or more processors may be configured to perform the techniques. The memory may be configured to store a plurality of spherical harmonic coefficients. The one or more processors may be configured to perform an energy analysis with respect to the plurality of spherical harmonic coefficients to determine a reduced version of the plurality of spherical harmonic coefficients.
Abstract:
A device comprises one or more processors configured to apply a binaural room impulse response filter to spherical harmonic coefficients representative of a sound field in three dimensions so as to render the sound field.
Abstract:
In general, techniques are described for determining renderers used for rendering spherical harmonic coefficients to generate one or more loudspeaker signals. A device comprising one or more processors may perform the techniques. The one or more processors may be configured to determine a local speaker geometry of one or more speakers used for playback of spherical harmonic coefficients representative of a sound field, and configure the device to operate based on the local speaker geometry.
Abstract:
In general, techniques are described for obtaining audio rendering information in a bitstream. A device configured to render higher order ambisonic coefficients comprising a processor and a memory may perform the techniques. The processor may be configured to obtain sign symmetry information indicative of sign symmetry of a matrix used to render the higher order ambisonic coefficients to generate a plurality of speaker feeds. The memory may be configured to store the sparseness information.
Abstract:
In general, techniques are described for transforming spherical harmonic coefficients. A device comprising one or more processors may perform the techniques. The processors may be configured to parse the bitstream to determine transformation information describing how the sound field was transformed to reduce a number of the plurality of hierarchical elements that provide information relevant in describing the sound field. The processors may further be configured to, when reproducing the sound field based on those of the plurality of hierarchical elements that provide information relevant in describing the sound field, transform the sound field based on the transformation information to reverse the transformation performed to reduce the number of the plurality of hierarchical elements.