Abstract:
Embodiments of the present invention are directed toward enabling a user to quickly interact with a graphical user interface (GUI) displayed by the HMD. Utilizing techniques provided herein, a hand or other object can be used to select visual elements displayed by the HMD. The visual elements can be located within larger active regions, allowing the user to more easily select a visual element by selecting the active region in which the visual element is disposed.
Abstract:
Embodiments of the present invention are directed toward enabling a user to quickly interact with a graphical user interface (GUI) displayed by the HMD. Utilizing techniques provided herein, a hand or other object can be used to select visual elements displayed by the HMD. The visual elements can be located within larger active regions, allowing the user to more easily select a visual element by selecting the active region in which the visual element is disposed.
Abstract:
Methods, systems, computer-readable media, and apparatuses for selecting an Augmented Reality (AR) object on a head mounted device (HMD) are presented. In some embodiments, an HMD may define a Region-of-Interest (ROI) based on a gesture formed by at least one hand of a user. Subsequently the HMD may display to the user a shape on the HMD. In at least one arrangement, the shape outlines the ROI. Additionally, the HMD may display to the user a plurality of AR objects, each of the plurality of AR objects being associated with a target inside the ROI. Furthermore, the HMD may reduce the size of the ROI based on a first movement of the at least one hand of the user to form a reduced-sized ROI. In at least one arrangement, the reduced-sized ROI is used to select a specific AR object from the plurality of AR objects.
Abstract:
A user interface (UI) of a head mounted display (HMD) is provided that allows a user to access one or more persistent data elements that are otherwise outside the user's initial field of view by using a head movement, such as a head tilt (i.e., movement about a horizontal axis) and/or rotation (i.e., movement about a vertical axis). Embodiments also can provide for further movement and/or other manipulation of data of persistent data elements with further detected movement of the user's head.
Abstract:
Methods, systems, computer-readable media, and apparatuses for selecting an Augmented Reality (AR) object on a head mounted device (HMD) are presented. In some embodiments, an HMD may define a Region-of-Interest (ROI) based on a gesture formed by at least one hand of a user. Subsequently the HMD may display to the user a shape on the HMD. In at least one arrangement, the shape outlines the ROI. Additionally, the HMD may display to the user a plurality of AR objects, each of the plurality of AR objects being associated with a target inside the ROI. Furthermore, the HMD may reduce the size of the ROI based on a first movement of the at least one hand of the user to form a reduced-sized ROI. In at least one arrangement, the reduced-sized ROI is used to select a specific AR object from the plurality of AR objects.
Abstract:
System and methods are disclosed to selectively project individual UI elements of display images from stereoscopic HMDs as monocular or stereoscopic images. An UI element may be tagged for rendering as a monocular image or as stereoscopic images with a stereo separation to create a perception of depth. Tagging of UI elements as monocular images or stereoscopic images may be based on whether the UI elements are persistent elements. Persistent elements present information to the user but do not require the user's focused attention. Persistent elements may be rendered as monocular images to allow the user to focus on other UI elements or on the real world while maintaining awareness of information presented by the persistent elements. In contrast, non-persistent UI elements may require the user's focused attention. Non-persistent UI elements may be rendered as stereoscopic images for projection at a specific depth plane to invite the user's focus.
Abstract:
Methods, systems, computer-readable media, and apparatuses for selecting an Augmented Reality (AR) object on a head mounted device (HMD) are presented. In some embodiments, an HMD may define a Region-of-Interest (ROI) based on a gesture formed by at least one hand of a user. Subsequently the HMD may display to the user a shape on the HMD. In at least one arrangement, the shape outlines the ROI. Additionally, the HMD may display to the user a plurality of AR objects, each of the plurality of AR objects being associated with a target inside the ROI. Furthermore, the HMD may reduce the size of the ROI based on a first movement of the at least one hand of the user to form a reduced-sized ROI. In at least one arrangement, the reduced-sized ROI is used to select a specific AR object from the plurality of AR objects.
Abstract:
Methods, systems, computer-readable media, and apparatuses for selecting an Augmented Reality (AR) object on a head mounted device (HMD) are presented. In some embodiments, an HMD may define a Region-of-Interest (ROI) based on a gesture formed by at least one hand of a user. Subsequently the HMD may display to the user a shape on the HMD. In at least one arrangement, the shape outlines the ROI. Additionally, the HMD may display to the user a plurality of AR objects, each of the plurality of AR objects being associated with a target inside the ROI. Furthermore, the HMD may reduce the size of the ROI based on a first movement of the at least one hand of the user to form a reduced-sized ROI. In at least one arrangement, the reduced-sized ROI is used to select a specific AR object from the plurality of AR objects.
Abstract:
Methods, systems, computer-readable media, and apparatuses for providing intuitive, functional, and convenient ways of enabling a user of a head-mounted display unit or another augmented reality enabled device to interact with various user interfaces and other features provided by such a unit or device are presented. In some embodiments, a computing device, such as a head-mounted display unit, may receive camera input of a scene. Subsequently, the computing device may identify at least one reference object in the scene, for example, based on detecting one or more rectangles in the received camera input. The computing device then may receive input that defines a surface segment relative to the at least one reference object. Thereafter, the computing device may render the surface segment.
Abstract:
Described herein is a system and method for displaying a stereoscopic plenoptic image or video to a user, with eye-tracking capabilities. A display device displays a plenoptic image or video on a screen, and focuses the plenoptic image or video at the depth plane corresponding to the eye-coordinates of the user's gaze. The focused depth plane in the displayed plenoptic frame updates as the frames progress in the video stream, thereby constantly re-focusing the depth plane of the currently displayed plenoptic frame depending on the location of the user's gaze.